
Public Reporting Burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comment 
regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington 
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302, and 
to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington DC 20503

1. AGENCY USE ONLY (Leave Blank)

4.  TITLE AND SUBTITLE

6. AUTHORS

7.  PERFORMING ORGANIZATION NAMES AND ADDRESSES

9.  SPONSORING/MONITORING AGENCY NAME(S) AND 
ADDRESS(ES)

U.S. Army Research Office 
 P.O. Box 12211 
 Research Triangle Park, NC 27709-2211

11.  SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department 
of the Army position, policy or decision, unless so designated by other documentation.

12. DISTRIBUTION AVAILIBILITY STATEMENT

Approved for Public Release; Distribution Unlimited

13.  ABSTRACT (Maximum 200 words)

The abstract is below since many authors do not follow the 200 word limit

14.  SUBJECT TERMS

blind deconvolution, blur support estimation, multiframe deblurring, image sequence 
superresolution, moving least-squares

17.  SECURITY 
CLASSIFICATION OF REPORT

UNCLASSIFIED

NSN 7540-01-280-5500

Professor N. K. Bose

Pennsylvania State University

Office of Sponsored Programs

110 Technology Center, 200 Innovation Blvd.
University Park, PA 16802 -

Wavelet-Based Blind Superresolution from Video Sequence and in 
MRI

REPORT DOCUMENTATION PAGE

18.  SECURITY CLASSIFICATION 
ON THIS PAGE

UNCLASSIFIED

2. REPORT DATE:

12b.  DISTRIBUTION CODE

UNCLASSIFIED

19.  SECURITY 
CLASSIFICATION OF 
ABSTRACT

5.  FUNDING NUMBERS

8.  PERFORMING ORGANIZATION REPORT 
NUMBER

10.  SPONSORING / MONITORING AGENCY 
REPORT NUMBER

DAAD190310261

44250-CI.2

Final Report

Form Approved OMB NO. 0704-0188

3. REPORT TYPE AND DATES COVERED

15-Aug-2003

Unknown due to possible attachments

16.  PRICE CODE

Standard Form 298 (Rev .2-89) 
Prescribed by ANSI Std. 
239-18 298-102

15.  NUMBER OF PAGES

20.  LIMITATION OF 
ABSTRACT

UL

- 31-Dec-2005



Wavelet-Based Blind Superresolution from Video Sequence

Report Title

ABSTRACT
The first contribution of this research is the development of a mathematical framework for deployment of second-generation wavelets for 
image superresolution. Second, the Biggs-Andrews  multichannel iterative blind deconvolution (IBD) algorithm is modified to include the 
blur support estimation module. Then the asymmetry factor for the Richardson-Lucy  update-based IBD algorithm is calculated. Simulations 
conducted on real-world and synthetic images confirm the importance of accurate support estimation in the blind superresolution problem. 
The effect of the threshold level on reconstructed image quality in second-generation wavelet superresolution is investigated and a measure 
based on the singular values of the image matrix is employed as a reliable gauge of visual image quality. A discrete implementation of the 
moving least squares (MLS) is made on images and the effect of choice of the two dependent parameters, scale and order, on noise filtering 
and reduction of blur introduced during the MLS process is studied. Finally, the role of brushlets
in textured image denoising and segmentation is investigated and plans made
for future research in miniaturized computational imaging systems for superresolution with increased field of view.

(a) Papers published in peer-reviewed journals (N/A for none)

N. K. Bose, S.Lertrattanapanich and M. B. Chappalli, Superresolution with Second Generation Wavelets, Signal Processing, Image 
Communication, 19 (5), pp.387-391, 2004. 

N. K. Bose and M. B. Chappalli,  A Second Generation Wavelet Framework 
for Superresolution with Noise Filtering,  International J. on Imaging 
Science and Technology (Special Issue on High Resolution Image Reconstruction), Vol. 14, No. 2, pp. 84-89, 2004.

N. A. Ahuja and N. K. Bose,  Spatiotemporal-Bandwidth Product of m-Dimensional signals,  IEEE Signal Processing Letters, Vol. 12, No. 
2, pp. 123-125, Feb 2005

Chih-Chung Yang and N. K. Bose, Landmine Detection and Classification With Complex-Valued Hybrid Neural Network Using Scattering 
Parameters Dataset, IEEE Transactions on Neural Networks, vol. 16, no. 3, May 2005, pp. 743-753.

Mahesh B. Chappalli and N. K. Bose,  Simultaneous Noise Filtering and 
Super-Resolution With Second-Generation Wavelets,  IEEE Signal Processing Letters, Vol. 12, No. 11, pp. 772-775, Nov 2005.

N. Ahuja, S. Lertrattanapanich and N. K.  Bose, "Properties determining choice of mother wavelet," IEE Proceedings on Vision, Image and 
Signal Processing, Volume 152,  Issue 5, October 2005, pp. 659 - 664.

Chih-Chung Yang and N.K. Bose,  Generating fuzzy membership function 
with self-organizing feature map,  Pattern Recognition Letters 27 
(2006) pp. 356-365.

N. K. Bose and Nilesh A. Ahuja,  Superresolution and Noise Filtering Using Moving Least Squares, accepted for publication in IEEE 
Transactions On Image Processing.

M. B. Chappalli and N. K. Bose,  Enhanced Biggs-Andrews asymmetric 
iterative blind deconvolution, accepted for publication in  Multidimensional Systems and Signal Processing.

N. K. Bose, Michael K. Ng and Andy C. Yau,  A fast algorithm for image super-resolution from blurred observations, accepted for 
publication in   EURASIP Journal on Applied Signal Processing

List of papers submitted or published that acknowledge ARO support during this reporting 
period.  List the papers, including journal references, in the following categories:



(b) Papers published in non-peer-reviewed journals or in conference proceedings (N/A for none)

N. K. Bose, M. K. Ng, A. C. Yau, Super-Resolution Image Restoration from Blurred Observations, Proceedings of International 
Symposium on Circuits and Systems (ISCAS 2005), Kobe, Japan pp. 6296-6299, May 2005.

 10.00Number of Papers published in peer-reviewed journals:

Number of Papers published in non peer-reviewed journals:

N. K. Bose, Blind Superresolution Research: PSF Support Estimation,
Invited  ARDA Workshop Participant, ORNL, TN, February 2005

N. K. Bose, Generalized Sampling Theorem for BL Signals, Invited  ARDA Workshop Participant, ORNL, TN, June 2005

N. K. Bose, Critical Issues for PERIODIC, Invited  ARDA Workshop Participant, ORNL, TN, October 2005

N. K. Bose, Latest Results on Superresolution, Akita Prefectural 
University, Honjo, Japan, August 2005

N. K. Bose, Iterative Blind Second Generation Wavelet Superresolution and the Role of Moving Least Squares, International Conference 
on Super-Resolution Imaging, August 29-September 1, 2005, University of
HongKong, HongKong.

(c) Papers presented at meetings, but not published in conference proceedings (N/A for none)

 1.00

Number of Papers not Published:

Nilesh A. Ahuja and N. K. Bose, "Multidimensional Generalized Sampling
Theorem for Wavelet Based Image Superresolution," International Conference on Image Processing, Atlanta, Georgia, 2006.

Andy C.Yau, N. K. Bose,and Michael K. Ng, "An Efficient Algorithm for Superresolution in Medium Field Imaging," Multidimensional 
Systems and Signal Processing, Revision completed on March 22, 2006.

(d) Manuscripts

 5.00

Number of Manuscripts:  2.00

Number of Inventions:

Graduate Students

PERCENT_SUPPORTEDNAME
Mahesh B. Chappalli  0.50 No
Nilesh A. Ahuja  0.50 No
Andy Yau  0.25 No
Chih-Chung Yang  0.25 No
Dinesh Somasundaram Iyer  0.10 No

 1.60FTE Equivalent:

 5Total Number:

Names of Post Doctorates

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:



Names of Faculty Supported

National Academy MemberPERCENT_SUPPORTEDNAME
Nirmal K. Bose  0.25 No

 0.25FTE Equivalent:

 1Total Number:

Names of Under Graduate students supported

PERCENT_SUPPORTEDNAME
Zachary Harmany No
FTE Equivalent:

 1Total Number:

Names of Personnel receiving masters degrees

NAME
Dinesh Somasundaram Iyer No
Kenneth Neiss No
Sarah Lannes No
Nilesh Ahuja No

 4Total Number:

Names of personnel receiving PHDs

NAME
Mahesh B. Chappalli No
Chih-Chung Yang No

 2Total Number:

Names of other research staff

PERCENT_SUPPORTEDNAME

FTE Equivalent:

Total Number:

Sub Contractors (DD882)

Inventions (DD882)





Wavelet-Based Blind Superresolution from

Video Sequence

Army Research Office Grant DAAD 19-03-1-0261

Research was Sponsored by: U. S. ARMY RESEARCH

OFFICE

Research Triangle Park

NC 27709-2211

Principal Investigator:

Dr. N. K. Bose

Director, The Spatial and Temporal Signal Processing Center

Department of Electrical Engineering

The Pennsylvania State University

University Park, PA 16802

1



Contents

1 Foreword 1

2 Statement of the Problem Studied 1

3 Summary of the Most Important Results Obtained 2

3.1 Optimal Choice of Threshold in Second Generation Wavelet Superresolution [2] 3

3.2 Iterative PSF Support Estimation for the Biggs-Andrews Iterative Blind De-

convolution algorithm [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.3 Moving Least Squares in Image Sequence Superresolution [4] . . . . . . . . . 4

4 Appendix 4

2



1 Foreword

Image superresolution refers to methods that increase spatial resolution by fusing information

from a sequence of images, acquired in one or more of several possible ways. The high

resolution filtered image is constructed from the aliased (undersampled) noisy and blurred

frames with either subpixel shifts or the use of intentional blurring by designing lenses with

different point spread functions.

A demand for higher resolution is seen in many fields including bio-medical imaging

(for purposes like image-guided surgery and image-assisted medical diagnosis), entertain-

ment (high definition television or HDTV), satellite and astronomical imaging, chemical and

biological research (high resolution electron microscopy), military surveillance and remote

sensing. Indeed, this demand, in many cases, exceeds the maximum resolution capability of

current acquisition systems. In other words, the current state of image sensor technology

acts as a limiting factor in acquisition. In various other cases, factors such as cost, physical

attributes like size and weight, and quality, instead of technology, constrain the maximum

resolution obtainable from the acquisition device. Yet another set of cases exist in which

resolution is compromised due to the need for flexibility and robustness with respect to var-

ious environmental conditions, among others. In all such cases, the solution to the need

for higher resolution necessitates the design of technological devices in the form of digital

image processing algorithms to satisfy the demand for high quality and high resolution (HR)

images and video.

2 Statement of the Problem Studied

Wavelet superresolution is a topic that was introduced only about five years back. Prior to

this research, all approaches used only first generation wavelets without adequate attention

to the choice of mother wavelets. Second generation scaling functions and wavelets differ from

their first generation counterparts in the property that they are not necessarily translates and

dilates of one function. This allows adaptation to more generic conditions (such as irregular

samples, weights, surfaces etc.) while preserving some powerful and important properties
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of FGWs such as time-frequency localization, multi-resolution analysis and the existence

of fast transforms. This renders SGWs useful in many real-life problems and applications

where FGWs cannot be readily applied. Since SGWs sacrifice the properties of translation

and dilation, they cannot be constructed using Fourier transform based methods and instead

rely on the lifting scheme, which is an entirely spatial domain construction technique.

The attribute ‘blind ’ applied to the superresolution problem denotes the lack of in-

formation on the function(s) representing the blur in the system. Therefore, a HR re-

construction algorithm/method should include image registration, denoising and deblurring

components in addition to the superresolution module.

This research presents new computationally efficient algorithms for superresolution

which offer better performance than other current methods. Typically, the superresolution

module is followed by a separate denoising module. But in the case of the superresolution

algorithms presented in this research, this module is rendered unnecessary since denoising

is achieved simultaneously with superresolution, and is hence implicit to the superresolution

module. The final step involves a multi-frame blind deconvolution algorithm which results in

a denoised and deblurred high resolution image. This research improves on the performance

of a popular and effective blind deconvolution algorithms which extends directly to the

multi-frame case.

3 Summary of the Most Important Results Obtained

The use of second generation wavelets (SGWs) to attain superresolution (from a captured

sequence of low resolution noisy and blurred frames) with noise filtering has been shown to

be possible without any assumption on grid (sampling lattice) structure. The mathematical

framework developed [1] is based on nonseparable two-dimensional methods after demon-

strating the feasibility in the separable case. The procedure allows the incorporation of the

more general projective camera motion model into the framework, instead of only displace-

ment and rotational models. The primary goal of achieving blind superresolution with blur

support estimation has been realized. The results obtained proceed from a special but useful

case of fast super-resolution under periodic boundary condition, derivation of an optimal
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threshold to resolve the tradeoff between conflicting factors of satisfactory blur removal and

noise reduction for a visually pleasing superresolved image, to, subsequently, multiframe

blind superresolution and noise filtering with, importantly, the accurate estimation of blur

support.

3.1 Optimal Choice of Threshold in Second Generation Wavelet

Superresolution [2]

Wavelet coefficient thresholding has been shown to be effective in reducing spatial domain

noise in the second generation wavelet based super-resolution algorithm. At the same time,

thresholding of wavelet coefficients increases the blurring in an image due to loss of high

frequency information. Hence, the choice of threshold for noise reduction should be made in

a manner so as to achieve an optimal trade-off between the desirable noise reduction and the

undesirable blurring. In this research, the effect of the threshold level on reconstructed image

quality has been investigated. In the presence of blurring in the input along with noise, the

choice of threshold plays an important role in determining the visual quality of the generated

high-resolution image. The unsuitability of PSNR as a measure of image quality is confirmed

and a new measure based on the singular values of the image is employed. Optimal choice of

the threshold for noise filtering has been coupled with adaptive neighborhoods for prediction,

both of which improve the performance of the second generation wavelet superresolution

(SGWSR) algorithms.

3.2 Iterative PSF Support Estimation for the Biggs-Andrews It-

erative Blind Deconvolution algorithm [3]

The issue of blur in blind multiframe superresolution has been handled, especially in con-

junction with an accurate estimation of unknown blur support. The iterative multiframe

blind deconvolution algorithm considered by Biggs-Andrews requires exact knowledge of the

support of the PSF for optimal performance and this is a serious drawback. Thus, in a

sense, it is not totally blind. A significant outcome of this research is the modification of

the Biggs-Andrews algorithm so that it incorporates the important step of iterative point
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spread function (PSF) support estimation.

3.3 Moving Least Squares in Image Sequence Superresolution [4]

The Moving Least Squares (MLS) method is a technique that is likely to have a place in

the task of image sequence superresolution because of its ability to interpolate over a grid of

irregularly spaced data points created by the undersampled, low-resolution, possibly blurred

and noisy images images. The basis functions chosen in approximation to get the interpolant

are usually multivariate polynomials, and the highest total degree of the polynomial used is

the order of approximation. A weighted least-squares estimation procedure is used to find

the coefficients of the basis function. The weight function used is the Gaussian function.

References

[1] N. K. Bose and M. B. Chappalli, “A second generation wavelet framework for super-

resolution with noise filtering”, International J. on Imaging Science and Technology

(Special Issue on High Resolution Image Reconstruction), vol. 14, no. 2, pp. 8489, 2004.

[2] M. B. Chappalli and N. K. Bose, “Simultaneous noise filtering and superresolution with

second-generation wavelets”, IEEE Signal Processing Letters, vol. 12, no. 11, pp. 772775,

November 2005.

[3] M. B. Chappalli and N. K. Bose, “Enhanced Biggs-Andrews asymmetric iterative blind

deconvolution”, Multidimensional Systems and Signal Processing, accepted for publica-

tion, 2005.

[4] N. K. Bose and Nilesh. A. Ahuja, “Superresolution and noise filtering using moving least

squares”, IEEE Transactions on Image Processing , accepted for publication, 2005.

4 Appendix

Documents describing in detail the research results mentioned above are presented next.

4



A Second-Generation Wavelet Framework for Super-Resolution
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ABSTRACT: The use of second-generation wavelets to attain super-
resolution with noise filtering is described for a captured sequence of
low-resolution frames without any assumptions on grid (sampling
lattice) structure. The approach is based on 2D methods. The proce-
dure allows the incorporation of the more general projective camera
motion model into the framework, instead of only displacement and
rotational models. Several simulations that compare the implementa-
tions of the algorithm presented here with other related approaches
help illustrate the suitability of SGWs (coupled with hard or soft
thresholding) in the task of image sequence superresolution with
simultaneous noise filtering. © 2004 Wiley Periodicals, Inc. Int J Imaging
Syst Technol, 14, 84–89, 2004; Published online in Wiley InterScience (www.
interscience.wiley.com). DOI 10.1002/ima.20011

Key words: image sequence super-resolution; second-generation
wavelets; high-resolution reconstruction

I. MOTIVATION AND INTRODUCTION
In this section the suitability of second-generation wavelets (SGWs)
for image sequence super-resolution is justified to be the motivating
factor behind the research described here. This is followed by
background material, with primary emphasis on the conditions im-
portant in the attainment of super-resolution, like subpixel displace-
ments between adjacent frames, because this requirement is also
crucial to the procedure developed here.

A. Motivation. First-generation wavelets (FGWs) that are dilates
and translates of a chosen mother wavelet imply a regular sampling
of the data, are defined on infinite domains, and have difficulties in
dealing with boundaries. At the boundary, where one runs out of
data as in the case of a digital image frame with a finite number of
pixels, zero padding, cyclic and acyclic extensions of data have been
used in the past. Special basis functions (translates and dilates of a
vector of scaling functions) (Windmolders et al., 2003) near the
boundary such that all basis functions are defined over the finite
extent array are possible to use, but still adaptations near the bound-
ary will be required. Furthermore, image sequence super-resolution
(high resolution) can be viewed in the context of the conversion of
the high-resolution nonuniformly sampled raster (irregular grid or

nonuniform sampling lattice) generated from an acquired sequence
of low-resolution frames to the desired uniformly sampled high-
resolution grid. Second-generation wavelets (SGWs) can not only
deal with bounded domains and arbitrary boundary conditions, but
also irregular sampling intervals, which are at the heart of a se-
quence of low-resolution images from which image super-resolution
is desired. FGWs have been used in image sequence super-resolu-
tion during the last three or four years (Bose and Lertrattanapanich,
2004; Nguyen and Milanfar, 2000).

SGWs replace dilations and translations with an entirely spatial
domain lifting scheme (Sweldens, 1998) based on the operations of
splitting, prediction, and updating. They are suitable for use in
multidimensions. In the lifting scheme, the forward transform is
implementable with low storage and computational time costs; the
inverse transform is implemented very simply by essentially revers-
ing (updating, prediction, and merging in place of splitting) the order
of operations in the forward transform. Importantly, the lifting
scheme adjusts well to boundary conditions and irregular sampling.
SGWs are a generalization of biorthogonal wavelets (traditional
biorthogonal wavelets have difficulty dealing with boundaries) and
form a Riesz basis for some function spaces (Sweldens, 1998;
Sweldens and Schröder, 1996; Vanraes et al., 2002). SGWs have
recently been used to solve a system of nonlinear partial differential
equations with complicated boundary conditions by using a process
of grid adaptation and thresholding to control the error in approxi-
mation (Vasilyev and Bowman, 2000).

The area where filter banks and wavelets have had the most
visible impact is compression. At the other end of the application
spectrum, since 2000, FGWs have been used to attain super-resolu-
tion from image and video sequences. The importance of the choice
of the mother wavelet and mother scaling function in different
applications has been pointed out recently. For example, the opti-
mum wavelet providing the maximum compression ratio and least
encoding delay (compression-speed tradeoff) for audio signals from
stringed instruments like the sitar was found to be the biorthogonal
spline wavelet whereas for audio signals from castanets, the Dau-
bechies wavelet was optimum (Sathidevi and Venkataramani, 2002).

B. Introduction. Techniques for enhancing the resolution by pro-
cessing the acquired images shifted by fraction of a pixel (subpixel)
with respect to each other are well documented. To cite a few,
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Research supported by Army Research Office Grant DAAD 19-03-1-0261.
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Poletto and Nicolosi (1999) developed a high-resolution reconstruc-
tion algorithm insensitive to high uncertainties in the relative sub-
pixel displacements of the low-resolution frames and to a low
signal-to-noise ratio. Shift information of the sampling lattices in
high-resolution reconstruction (image sequence super-resolution) is
extracted from a given image sequence, static or dynamic, through
subpixel accuracy. In dynamic image reconstruction, motion com-
pensation is needed before subpixel shift information can be ex-
tracted from the sequence. A survey of several subpixel accuracy
image registration algorithms for, especially, machine vision algo-
rithms is available in Kim and Su (1993). In Su and Kim (1994), for
each block image in a reference frame, motion estimation and
subpixel registration are performed against adjacent frames, prior to
high-resolution reconstruction from dynamic image sequences.

Algorithms have been proposed that use subpixel shifts between
a sequence of captured images [low-resolution (LR) frames] to
estimate a single high-resolution (HR) image, called a super-re-
solved image. This process has been referred to as microscanning
(Gillett, et al., 1995). Such subpixel shifts may occur due to random
variation between the objects in a scene and camera motion. The
sampling of the scene is thus nonuniform, and the shifts are com-
bined so that an image that is effectively sampled at a higher rate
than the individual frames is constructed. Improved resolution from
subpixel shifted pictures was also obtained (Ur and Gross, 1992) by
using a multichannel generalized sampling theorem. The need for
subpixel displacements was apparent in the recursive algorithms
developed for HR reconstruction from LR frames in the presence not
only of observation error but also error in estimation of the unknown
shift parameters (Bose et al., 1993). For subpixel motion estimation
the work of Schultz et al. (1998) is also relevant. Bose and Boo
(1998) presented a mathematical model for constructing an HR
image from LR images acquired through a multisensor array. Sub-
pixel shifts were needed in this model and, therefore, in subsequent
research that used the model, (e.g., Chan et al., 2003; Ng et al.,
2002).

In the early work on wavelet superresolution, the important
problem of mother wavelet selection was neglected (Nguyen and
Milanfar, 2000). The finitely supported families evaluated for the
task of image sequence super-resolution [discussed in Lertrattan-
apich (2003)] for optimum selection of mother wavelet included
Haar, Daubechies, Symlets, Coiflets, and B-splines. The common
desirable properties of mother scaling function and wavelet—in-
cluding finite small support (to reduce computational chore), explicit
and simple expression, symmetry (or linear phase), orthogonality or
biorthogonality, high regularity (smoothness), low approximation
error, and high time—frequency localization—are best satisfied by
B-splines among the classes considered.

II. OBJECTIVE
The basic idea of second-generation wavelets (SGWs) is to sacrifice
translation and dilation in order to construct wavelets adapted to
general settings, but to simultaneously preserve many powerful
properties of first-generation wavelets (FGWs) such as time—fre-
quency localization, orthogonality or biorthogonality, and fast trans-
forms. It has been noted quite recently that SGWs are inherently
more suited for image super-resolution. In Bose et al. (2004), the HR
reconstruction with noise reduction was restricted to semi-regular
grids (sampling lattices) [tensor product of 1D irregular grids (sam-
pling lattices)]; consequently, the LR frames were displaced only by
translations from a reference frame, as approximated in far-field
imaging—e.g., satellite imaging or aerial photography.

In the research reported here, attention is focused on achieving
super-resolution from registered noisy LR frames without any as-
sumptions on grid (sampling lattice) structure: that is, the procedure
will be able to handle arbitrary irregular grids (sampling lattices),
although the subpixel displacement assumption, which is justified in
super-resolution algorithms, will be maintained. A consequence of
the use of arbitrary grids will be the ability to incorporate the more
general projective camera motion model into the framework. The
ability to handle arbitrary sampling lattices results from the use of
2D prediction and update operators as opposed to the tensor prod-
uct of 1D operators used by Bose et al. (2004). Furthermore, in the
2D case, the definition of odd and even samples in 1D cannot be
directly extended. This subsequently results in the inability to define
levels of a multiresolution decomposition in the dyadic sense. Thus,
in the SGW setting, only one coefficient per scale is chosen for
prediction (Vanraes et al., 2002). The use of genuine 2D methods
gives better results, as seen from simulation results presented below.

III. PREPROCESSING PROCESS FOR SUPER-
RESOLUTION ALGORITHM
A. Singularity Prevention. In the super-resolution problem, af-
ter registering all samples in LR images into a HR grid (sampling
lattice), it is possible that two samples or more are either trans-
formed to the same location or assumed to be the same because of
machine imprecision. In some super-resolution algorithms, certain
irregular sampling structures in a HR grid (sampling lattice) that can
lead to a singular problem were identified by Kim and Bose (1990).
Therefore, here also, the LR frames that give rise to such singular
sampling structures are detected and eliminated before the super-
resolution algorithm is implemented.

B. Bad Frame Elimination. Another possible problem arises
because some LR frames in the sequence may be too badly cor-
rupted by additive noise or severely blurred (or both) to be useful in
processing when compared with other frames in the sequence. Such
frames are called “bad frames.” These bad frames should be dis-
carded from the sequence because they usually deteriorate the re-
sulting HR image. A rationale for identifying the bad frames has
been advanced recently by Lertrattanapanich (2003). Because most
parts of LR frames usually contain the same region of interest (ROI),
the variances of these LR frames in the sequence should be more or
less the same unless they are bad frames. Note that the sample
variance �k

2 of the kth M � N LR frame fk[i, j] used here is defined
as

�k
2 �

1

MN � 1 �
i�0

M�1 �
j�0

N�1

�fk�i, j� � �k�
2, (1)

where

�k �
1

MN �
i�0

M�1 �
j�0

N�1

fk�i, j� (2)

is the sample mean of the kth LR frame fk[i, j].
Intuitively, the bad frames that are badly corrupted by additive

noise have higher variance than acceptable LR frames. In contrast,
the variances of the bad frames that are severely blurred by some
PSFs are lower than those of acceptable LR frames. This expectation
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has been substantiated by numerous simulations (Lertrattanapanich,
2003) and has been useful in the identification and subsequent
removal of bad frames.

IV. SUPER-RESOLUTION ALGORITHM USING SGWs
In this section, an algorithmic description of the process for obtain-
ing a super-resolved image from a set of LR images based on SGWs
and the lifting technique (Sweldens, 1998) is presented. Lifting is a
general technique that can be used for the construction of FGWs and
SGWs. FGWs can also be constructed using filter banks, but SGWs
can only be constructed using the lifting technique. The algorithm
presented represents a new and seemingly natural approach to super-
resolution. In addition, noise filtering is simultaneously imple-
mented.

Assumptions: The main assumption made is that the LR frames
have subpixel displacements with respect to a chosen reference LR
frame, which is a valid assumption in the super-resolution frame-
work (see e.g., Schultz et al., 1998; Ur and Gross, 1992)

A secondary assumption is that the LR frames are either already
registered or their registration matrices (projective camera motion
model parameter matrices) are known by the use of standard pro-
cedures (Lertrattanapanich, 2003; Lertrattanapanich and Bose, 2002;
Mann and Picard, 1997).

Let LRi[m, n], i � 1, 2, . . . , r, . . . , K represent the LR frames,
where LRr denotes the reference LR frame. The coordinate system
considered is with respect to LRr. Let f[m, n] denote the registered
image obtained using a preselected subset K1 � {1, 2, . . . , K} of the
available noisy frames. Let s[m, n] denote the super-resolved image
that exists on a regular HR grid, the coordinates of which are defined
by the rows of a matrix H. The order, N, of subdivision is determined
by the bivariate polynomial of partial degree (N � 1) in each
variable used for prediction and can be shown (Sweldens, 1998) to
correspond to the number of vanishing moments of the dual wavelet
(counterpart of scaling function in FGW), �. The number of van-
ishing moments of the primal wavelet, �, Ñ, is chosen in the update
step. A closed form expression cannot be given for the dual and
primal wavelets (unlike in some FGWs like B-spline based) because,
in the general second-generation setting, wavelets are custom built
to fit the given samples, and hence are arbitrary. In the simulation
results presented here, N � 2, Ñ � 1, because a 1-ring neighborhood
is used for prediction (note that for higher values of N and Ñ, a larger
neighborhood will be required to ensure a full rank overdetermined
system, used here, in the prediction operation described subse-
quently). Reasons for the choice of a 1-ring neighborhood in place
of a 1-ring neighborhood with flaps are presented in the algorithm
given below. Other higher-order neighborhoods, such as the 2-ring
neighborhood, are supersets of the 1-ring neighborhood with flaps,
and hence cannot be used for the same reasons as given for the
1-ring neighborhood with flaps.

The least squares prediction at a generic point [m0, n0] can be
viewed as the value at [m0, n0] of the surface that fits, in a least
squares sense, the points in Nm0n0

, the 1-ring 2D neighborhood of
[m0, n0]. Let m � [m1, . . . , m�]T and n � [n1, . . . , n�]T, represent
the vectors associated with the points belonging to Nm0n0

, where �
is the number of points in Nm0n0

. Let s represent the corresponding
vector of scaling function coefficients. The model for the surface (a
plane in this case since N � 2) is given by

s � �0 � �1m � �2n � e,

where e is the error in the fit with mean E{e} � 0. The minimum
norm least squares estimate of � � [�0 �1 �2] is given by

�̂�(PTP)�1PTs,

where the matrix P � [1 m n] and 1 is a vector of 1’s. The prediction
at a generic point [m0, n0] is then computed as the dot product

ŝ0 � �1 m0 n0� � �̂.

The detail coefficient that replaces the original value s0 at [m0, n0]
is then computed as

d0 � s0 � ŝ0. (3)

The update operator can be described by the vector u �
[u1, . . . , u�] where each of the ui’s is computed so that its �2-norm
is minimized using the equation (Delouille et al., 2003; Jansen et al.,
2001),

ui �
AiA*0�k�1
� �Ak�

2
, (4)

where A*0 is the support area of 	 around the point [m0, n0] and Ai

denotes the corresponding area around point i � Nm0n0
after the grid

has been coarsened by the removal of the predicted point [m0, n0].
Subsequently, each scaling function coefficient, sk, is updated ac-
cording to a set of equations associated with all the detail coeffi-
cients predicted using sk. A typical member of this set associated
with the generic point [m0, n0] is

d0 � s0 � �
k�1

�

skuk. (5)

A. Algorithm.

● If f[m, n] is not given, obtain f[m, n] using the known regis-
tration matrices of LRi[m, n], i � K1 on the coordinate system
� � � defined with respect to LRr. The grid (sampling lattice)
(on which f[m, n] exists) so obtained is an irregularly sampled
grid (sampling lattice).

● Define the required high-resolution grid (sampling lattice) in
the coordinate system defined above, that is, determine the
matrix H. Split H into two sets of points, one set, Hu, com-
prised of points whose values are to be updated and retained in
the subsequent steps of the algorithm, and another set, Hp,
which is to be predicted and eliminated from the coarse rep-
resentation of f[m, n] developed below.

● Compute the Delaunay triangulation (Okabe et al., 1992) of the
points defining f[m, n].

● For each point in the set Hp, say [m0, n0]:
–Determine the points in the 1-ring neighborhood (Figure 1),
Nm0n0

, to the extent possible. The use of a 1-ring neighbor-
hood with flaps for prediction was documented by Delouille
et al. (2003). But this was not employed because the assump-
tion of subpixel displacement of the LR frames tends to result
in a triangulation with flap points that are usually nearly
collinear with the points in the 1-ring neighborhood. This
may lead to ill conditioning of the prediction matrix which,
consequently, causes instability in the implementation of the
prediction operator.
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–Compute the prediction at [m0, n0] by means of a least
squares predictor, described above [boundary points are han-
dled differently as in, for example], Delouille et al. (2003),
using points in Nm0n0

. Subsequently, replace the scaling func-
tion coefficient at [m0, n0] by the detail coefficient in Eq. (3).

–Determine A*0, the support area of the scaling function around
[m0, n0]. This can be determined as the sum of one-third the
area of the triangles with common vertex [m0, n0].

–Delete [m0, n0] from the triangulation resulting in a coarser
grid (sampling lattice)

–Compute the corresponding areas, Ak, k � 1, . . . , �, of the
cells around points belonging to Nm0n0

in the coarsened grid.
–Compute the minimum norm update operator as in Eq. (4)
and update the scaling function coefficients at points belong-
ing to Nm0n0

, as in Eq. (5).

● A second-generation 2D wavelet surface has now been defined
on the irregularly sampled registered grid (sampling lattice).

● The detail coefficient values at the points on the HR grid
(sampling lattice) can now be computed either by ignoring the
irregularity of the grid and assigning the value of the closest
irregular point (no significant loss of accuracy due to subpixel
displacement assumption) or by resampling the wavelet (not
scaling function).

● To achieve noise reduction, the wavelet/detail coefficients
computed are subjected to thresholding (Jansen, 2001; Vanraes
et al., 2002).

● The inverse lifting procedure is now applied on the HR grid
(sampling lattice) to obtain the super-resolved image s[m, n].

V. SIMULATION RESULTS
Results obtained by the use of the SGW-based algorithm described
in the preceding section are presented and discussed below. The LR
frames used in the simulation were of size 40 � 40 pixels and were
generated using an 80 � 80 image by downsampling and low-pass
filtering. Further, the LR frames are all displaced with respect to
each other, but unlike the results presented by Bose et al. (2004) (in
which the displacements were restricted to only translations), the
displacements follow the more general projective model. The LR
frames were also corrupted by AWGN of variance 0.1. As men-
tioned earlier, in the simulations presented in this section, the
number of vanishing moments of the dual and primal wavelets, N
and Ñ respectively, are 2 and 1.

Figure 2 shows the results from one simulation. In this case, six
LR frames were used and a resolution improvement factor of 2 in
each dimension was chosen. It is noted that the use of higher number
of LR frames leads not only to higher resolution factors, but also to
improved noise reduction. A sample LR frame is shown in Figure
2(a) and the original image is shown in Figure 2(b). The SGW-based
high-resolution reconstructions using hard and soft thresholding are
shown in Figures 2(c) and 2(d), respectively. For comparison, four
other high-resolution reconstructions based on surface approxima-
tion are given in Figures 2(e)–(h). Note that direct interpolation
(bilinear and bicubic) of a single LR frame gives the visually worst
results, although their PSNR value is comparable to the others. The
Delaunay triangulation-based methods give much better results but
cannot simultaneously achieve noise filtering.

Results for another image are shown in Figure 3. As in the
previous result, six LR frames are used and the resolution improve-
ment factor is set to 2 in each dimension. Panel (a) shows a sample
LR frame. The original image is shown in Figure 3(b). The SGW-

Figure 1. 1-ring neighborhood with flaps.

Figure 2. Simulation result 1 with PSNR in dB.
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based HR reconstructions with noise reduction achieved using hard
and soft thresholding of wavelet coefficients are shown in Figures
3(c) and 3(d), respectively. Similar to the previous result presented,
surface interpolation based reconstructions are given in Figures
3(e)–(h).

In both the results presented, a point to be noted is the retention
of a reasonably high degree of sharpness in the noise-filtered SGW-
based reconstructions. This is in contrast to other noise filtering
techniques such as averaging and low-pass filtering, which typically
result in smoothing of edges.

To enable comparison and differentiation of the techniques pre-
sented in this article and in Bose et al. (2004), results generated by
both the methods applied to the same data set are presented in Figure

4. In this simulation, the displacements of the LR frames were
restricted to translations [required to run the algorithm given by
Bose et al. (2004)] and four LR frames were used. The LR frames
were corrupted by AWGN of a very low variance of 0.05. In both
methods, N � 2, Ñ � 1. Panels (a) and (b) give a sample LR frame
and the original image respectively. Figures 4(c) and 4(d) show the
reconstructions obtained by treating the registered image f[m, n] as
the tensor product of two 1D vectors. On treatment of f[m, n] in the
2D sense, the HR images obtained are given in Figures 4(g) and
4(h). It is important to observe that although the two sets of results
have very close PSNR values, the results obtained using the algo-
rithm presented here are much sharper. For comparison, the results
obtained using bilinear and bicubic surface interpolation after

Figure 3. Simulation result 2 with PSNR in dB.

Figure 4. Comparison of 1D (Bose et al., 2004) and 2D SGWSR algorithms with PSNR in dB.
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Delaunay triangulation are given in Figures 4(e) and 4(f), respec-
tively. Clearly, both the SGWSR methods outperform the surface
interpolation methods.

VI. CONCLUSIONS
A framework for achieving image sequence super-resolution simul-
taneously with noise filtering has been developed using SGWs
coupled with hard or soft thresholding. The procedure works well
when the noisy images acquired by sensors are not severely blurred.
A topic of future research is the embedding of a technical device into
the procedure to adequately overcome the degrading effects of blur,
when present to a significant extent. The problem is reminiscent to
that faced in earlier works on super-resolution. For example, in the
early DFT-based procedure (Kim and Bose, 1990), interpolation and
noise filtering were simultaneously implemented and it was later
shown that blur distortions in the input images can be compensated
with regularization during reconstruction (Kim and Su, 1993). In
recent super-resolution work, multiframe blur identification fol-
lowed by deblurring has been done in a separate module from the
super-resolution and noise filtering modules (Lertrattanapanich and
Bose, 2002).

The procedure depends on subpixel accuracy image registration.
For dynamic image sequences, motion compensation is necessary
prior to that and, although the algorithm presented here applies to
arbitrary nonuniform shift grids (sampling lattices), its robustness to
errors in estimation of motion parameters is another topic of future
research.

The main advantage of the procedure is that the speed of imple-
mentation provided by the lifting technique (surface approximation
methods (Lertrattanapanich and Bose, 2002) may be faster but do
not incorporate noise filtering), the adaptation to arbitrary nonuni-
form sampling lattice (especially relevant in dynamic image se-
quences), the absence of a priori assumptions on boundary condi-
tions (zero, periodic, Neumann have given progressively better
results over the years but make assumptions that are unnecessary
here), and the independence from proper choice of mother wavelets
and scaling functions which makes SGW-based super-resolution
methods potentially more suitable in multimedia applications.
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Simultaneous Noise Filtering and Super-Resolution
with Second-Generation Wavelets
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Abstract— Wavelet coefficient thresholding is effective in re-
ducing spatial domain noise in wavelet-based super-resolution
algorithms. Here, the effect of the threshold level on reconstructed
image quality in second-generation wavelet super-resolution is
investigated. The choice of optimal threshold involves a trade-off
between noise filtering and blurring introduced by thresholding.
A measure based on the singular values of the image matrix is
employed as a reliable gauge of generated high-resolution image
quality.

Index Terms— Noise filtering, second-generation wavelets,
super-resolution, thresholding.

I. I NTRODUCTION

In this letter, the term “super-resolution” refers to algorithms
that produce a high-resolution (HR) image by combining
information from a captured sequence of low-resolution (LR)
frames. Due to various factors like imperfections in the ac-
quisition device, limited resolution of the physical sensing
elements, motion, and medium turbulence, the LR frames
are blurred and noisy. Hence, super-resolution algorithms
commonly include noise filtering and deblurring modules.
The focus of this letter is to improve the performance of
the second-generation wavelet super-resolution (SGWSR) al-
gorithms given initially in [1] and in a more general tow-
dimensional (2-D) setting in [2], though some of the results
presented apply to wavelet denoising in general. The aim is to
remove as much of the corrupting noise as possible without
adversely affecting the reconstructed image quality due toblur
introduced in the process. Though there are many techniques
for denoising images (for example [3], [4], [5] and [6]),
some of which consider optimal thresholding, the denoising
technique based on wavelet coefficient thresholding [7] is
selected here because this allows simultaneous noise filtering
and superresolution thereby reducing computation cost in the
overall framework. Most of the earlier methods dealing with
optimal thresholding of wavelet coefficients adopt a quality
metric based on mean-squared error (MSE), which does not
necessarily yield the best visual quality. The optimal threshold
for denoising based on wavelet coefficient thresholding is
obtained in this paper in terms of the visual quality defined by
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a metric that matches the human visual system (HVS) better
than other metrics [8]. The SGWSR methods simultaneously
incorporate noise filtering by hard/soft thresholding of wavelet
coefficients defined, respectively, by the following expressions
[7]:

dh =

{

d, d > ζ
0, d 6 ζ

, ds =

{

d − ζ, d > ζ
0, d 6 ζ

, (1)

whered represents the SGW coefficients before thresholding
andζ is the threshold. Soft thresholding, known to yield better
results [1], [2], is used in this paper. The algorithms in [1],
[2] did not investigate the optimal choice of threshold,ζ. It is
important to note that thresholding in the SGW setting is much
more challenging than in the first-generation wavelet (FGW)
case since small coefficients may carry important information
which is essential for a stable inverse transform [9]. The trade-
off between blur introduced by thresholding and input noise
mandates the need to find an optimal threshold as explained in
Section II. Section III substantiates why peak signal-to-noise
ratio (PSNR) and the universal image quality indexQ [10] are
unsuitable as measures of visual quality of an image. An image
quality measure based on the singular values of the image
matrix is then used to assess the effects of thresholding on
reconstructed image quality in Section IV. Finally, conclusions
are presented in Section V.

II. T HRESHOLDINGSGW COEFFICIENTS

A set of sub-pixel shifted frames,{fk}, k = 1, 2, . . . , K (of
sizen1 × n2) of the same object/scene, generated with small
variation in camera motion and position, and captured under
the same imaging conditions should have approximately the
same variance,σ2

k, and mean,µk, given by

σ2
k =

1

n1n2 − 1

n1−1
∑

i=0

n2−1
∑

j=0

(fk[i, j] − µk)2, (2)

µk =
1

n1n2

n1−1
∑

i=0

n2−1
∑

j=0

fk[i, j]. (3)

When zero-mean additive white noise is present, the variance
of the corrupted frame,̃fk, will be given by

σ̃2
k = σ2

k + η2, (4)

whereη2 is the variance of the noise. A severe additive noise
is one whose variance is high. Therefore, a frame which is
corrupted by a severe noise will have a variance much higher
than that of a frame with a high SNR. Blurring an image with
a point spread function (PSF)h[p, q], of supportm1 ×m2, is
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viewed as low-pass filtering of the image. The variance of the
blurred frame,f̃k, can be proved to be

σ̃2
k =

1

n1n2 − 1

n1−1
∑

i=0

n2−1
∑

j=0

m1−1
∑

p=0

m2−1
∑

q=0

m1−1
∑

r=0

m2−1
∑

s=0

h[p, q]h[r, s]Cfk
[(p, r); (q, s)], (5)

where Cfk
is the autocovariance of the original image,fk.

If the PSF is assumed to sum to unity over its support, then
σ̃2

k 6 σ2
k since |Cfk

[(p, r); (q, s)]| 6 Cfk
[(p, p); (q, q)] = σ2

k.
Consequently, blur tends to reduce the variance unlike noise,
which as seen from (4), increases the variance.

The opposing effects of blur and noise on the variance also
hold when the SGW coefficients are thresholded. Similar to the
FGW setting, the noise corrupting an image is carried over into
the SGW coefficients on application of the forward transform.
This is readily seen from the expression for the computation
of the SGW coefficients (based on lifting [11]) given by

d−1[i, j] = (s0[i, j] + n̄[i, j]) − P{N[i,j]}, (6)

where s0[i, j] is the pixel value at location[i, j], n̄[i, j]

LR frame

HR (low threshold)


high noise, low blur


HR (high threshold)


low noise, high blur


Fig. 1. Effect of threshold on input noise and blur introduced by thresholding

represents random white noise,d−1[i, j] is the computed SGW
coefficient, andP is the prediction operator that operates on
N[i,j], the specified neighborhood of point[i, j]. A detailed
description of the process of prediction for SGWSR is given
in [2]. The prediction operator,P , fails to predict the white
noise which propagates to the SGW coefficientd−1[i, j] in (6).
Thus, thresholding of the wavelet coefficients reduces the noise
in the reconstruction. However, high wavenumber information
in the SGW coefficients may be eliminated by thresholding
leading to possibly significant blurring of the reconstructed
image. Thus, a need for an optimal choice of the threshold
exists. Fig. 1 illustrates the above points.

III. I MAGE QUALITY MEASURES

PSNR and MSE are the most commonly used measures for
comparative image quality. They are defined for normalized
n1 × n2 images as

MSE =

∑

i

∑

j(f̃ [i, j] − f [i, j])2

n1n2
, (7)

PSNR = 20 log10

(

1√
MSE

)

, (8)

wheref and f̃ represent the original image1 and the observa-
tion, respectively. Higher PSNR and lower MSE are expected

1In real-world problems, the original image is usually inaccessible, which
motivates Section IV

to be indicators of better visual quality. However, it is known
that PSNR does not match the HVS [12]; that is, higher
PSNR does not always imply better visual quality. Studies
have shown that the HVS is more sensitive to blurring than
to noise. Another image quality measureQ proposed in [10],
though more sensitive to blur than PSNR, was shown by our
simulations to be not ideal for determiningζopt, the optimal
threshold, consistent with expectations from results in [8]. Q
is defined as [10]

Q =
4σff̃µfµf̃

(σ2
f + σ2

f̃
)(µ2

f + µ2
f̃
)
, (9)

whereµf andµf̃ are the means,σ2
f andσ2

f̃
are the variances

of the original and the observed images, respectively, andσff̃

is the cross-covariance between the original and the observed
images. The plots of PSNR andQ versus the threshold for an
SGWSR reconstruction are shown in Fig. 2. The input to the
SGWSR algorithm is a set of six registered LR frames,fk,
generated from the original image,f , as

fk = DHTkf + nk, k = 1, . . . , 6, (10)

whereTk is the projective transformation,H is the blur matrix
associated with a5 × 5 truncated Gaussian PSF (note that
this blur, which affects the input frames, is different fromthe
blur introduced due to thresholding in the reconstructed HR
images),D is the downsampling matrix, andnk is additive
white Gaussian noise (AWGN) of variance 0.01. Despite the
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Fig. 2. Effect of threshold on PSNR andQ in SGWSR

increased blurring and visual quality degradation with higher
thresholds (as observed in Fig. 1), both PSNR andQ measures
are inadequate and not sufficiently sensitive to this visual
quality change. In Fig. 2, though the curve appears to be
perfectly flat before and after the threshold marked asζopt,
there is a slight increase in PSNR andQ values atζopt (see
insets in Fig. 2) after which they remain constant. Flattening
of the curve occurs since all wavelet coefficients fall within
the threshold as it is increased beyondζopt. When considering
such flat regions, the minimum possible threshold is selected
asζopt.
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Another measure of image quality based on the singular
values of the image matrix was defined as [8]

MSV D =

∑k1×k2

j=1 |Dj − Dmed|
k1 × k2

, Dj =

√

√

√

√

p
∑

i=1

(si − s̃i)2,

(11)
wherek1 = n1/p, k2 = n2/p, Dmed is the median of theDj ’s
andsi, s̃i are the singular values of thejth p×p block of the
original and the observed image matrices, respectively. In[8],
it was also shown that theMSV D measure gives a much better
representation of the quality of an image with regard to the
HVS for a large variety of distortions. Another point to note
is that a lower value ofMSV D indicates better image visual
quality. For the same experiment which generated the curves
in Fig. 2, the variation of theMSV D metric for output image
quality is as shown in Fig. 3. It is seen that as the threshold

0 0.2 0.4 0.6 0.8 1
3.5

4.5

5.5

6.5

7.5

8

threshold, ζ

M
S

V
D

×10−2

ζopt

Fig. 3. MSV D metric based assessment of SGWSR HR image quality

is increased from 0, there is initially (until approximately
0.15) a significant improvement in image quality due to noise
reduction, but beyond this, as the effect of blur introduced
due to thresholding starts to dominate, the quality of the
reconstructed image suffers with increasing threshold. Thus,
thresholding involves a trade-off between noise reductionand
degree of blur introduced in the reconstructed HR image, and
hence, there should exist a threshold value,ζopt, the location
of the minimum of the curve in Fig. 3, for which this trade-off
is optimal. In other words, theMSV D metric is sensitive to
visual quality degradation due to blur.

IV. OPTIMAL THRESHOLD

The optimal threshold, ζopt, for the SGWSR algorithms
presented in [1], [2], and in general, for any denoising require-
ment, is the one which minimizes theMSV D metric defined
in (11). Since (11) involves the singular values of a matrix
(which cannot, in general, be expressed in terms of the matrix
elements), it is not possible to derive a closed-form analytic
expression forζopt. The optimal threshold is thus obtained by
plotting the curve ofMSV D values of the reconstructed HR
image for various values ofζ and then finding the threshold,
ζopt, corresponding to the location of its minimum.

It is however not practical (in terms of computational effort)
to plot such a curve every time the SGW-based (or any
other) superresolution algorithm is applied. Furthermore, in
most real-world cases, the original image is unavailable for
computing theMSV D or any other metric. The thresholdζopt,
which achieves the optimal trade-off between noise reduction
and degradation of visual quality due to introduced blur is
essentially dependent on the input noise, under the assumption
of similar image capture devices and imaging conditions2. It
follows that, for a specified input noise level,ζopt determined
for a small number of training images will be near optimal for
other images under similar imaging conditions.

Consider a real-valuedn1 × n2 (without loss of generality,
assumen1 > n2) image matrix,F = [f [i, j]] of rankR 6 n2,
with singular value decomposition (SVD)

UTFV =

[

Σ 0
0 0

]

, Σ = diag(s1, . . . , sR), (12)

where s1 > · · · > sR > 0 are the singular values ofF .
Consider the corruption of the image matrixF by a zero-
mean AWGN matrixN̄ to get F̃ =

[

f̃ [i, j]
]

= F + N̄ . Let

s̃1 > · · · > s̃R > 0 be the singular values of̃F , which is of
rank R. Then, from [13, pp. 203, Corollary 4.10], it follows
that

max
i

{|s̃i − si|} 6 ‖N̄‖2, i = 1, 2, . . . , R, (13)

where‖·‖2 is the matrix 2-norm. A generalization of the above
result is due to Mirsky (holds for any unitarily invariant norm)
which in the case of Frobenius norm (denoted by the subscript
Fr for the norm) becomes [13, pp. 205, Corollary 4.13]

∑

i

(s̃i − si)
2

6 ‖N̄‖2
Fr, i = 1, 2, . . . , R. (14)

Consequently, from (11),

Dj 6 ‖N̄‖Fr. (15)

Since (11) involves onlyDj ’s, theMSV D metric is essentially
bounded by the norm of the noise matrix,̄N = [n̄[i, j]].
Further, if the singular values ofF are distinct (simple), then
under the assumptions of sufficiently small noise [13, pp. 264-
266],

s̃i = si + uT
i N̄vi + O(‖N̄‖2

2), (16)

whereU = [u1 . . . un1
] and V = [v1 . . . vn2

] in the SVD in
(12). Ignoring the higher order terms, the expected value of
the sum of squares of the errors in the singular values is

E

{

n2
∑

i=1

(s̃i − si)
2

}

= E

{

n2
∑

i=1

(

uT
i N̄vi

)2

}

= Rη2, (17)

whereη2 is the variance of the noise. Thus, theMSV D metric
and consequently, the optimal threshold,ζopt, is dependent,
on the average, only on the imaging device and imaging con-
ditions. Therefore, for a given class of devices and relatively

2In the superresolution algorithms presented in [1], [2], the input blur is
due to the image capture device and is assumed constant. A different input
blur thus constitutes a different imaging condition.



IEEE SIGNAL PROCESSING LETTERS, VOL. 12, NO. 11, NOVEMBER 2005 4

fixed imaging conditions, the desiredζopt for the SGWSR
algorithm [1], [2] can be approximated by a thresholdζ̃opt

computed using a small number of training images.
Simulation results which support the analysis presented

above are given in Table I. 70 different HR images were
reconstructed from their respective sets of 6 LR frames which
were subjected to similar input degradations. The variance
of the optimal threshold (which was computed for each of
these HR images by plotting a curve and finding the threshold
corresponding to its minimum as explained earlier) for these
images is noted to be very small. As seen from Table I, for
another set of 70 images with different imaging conditions,
the optimal threshold, justifiably different, exhibits very low
variance, consistent with the analytical result given above.

Training Imaging Variance ζ̃opt

Set Conditions of ζopt (median)

70 AWGN of variance 0.001 7.44× 10
−4 0.02

(5× 5) input Gaussian blur
with variance 1.0

70 AWGN of variance 0.01 1.13× 10
−3 0.125

(5× 5) input Gaussian blur
with variance 0.5

TABLE I

VARIANCE OF ζopt FOR DIFFERENT IMAGING CONDITIONS; APPROXIMATE

OPTIMAL THRESHOLD, ζ̃opt

Finally, a sample LR frame and HR reconstructions, based
on the SGWSR algorithm, with the optimal thresholds ob-
tained from the PSNR curve in Fig. 2 and theMSV D curve
in Fig. 3 are shown in Fig. 4. The LR images were subjected
to a 5 × 5 Gaussian PSF blur and corrupted by zero-mean
AWGN of variance 0.01. The HR images obtained from the
SGWSR algorithm based on the optimal threshold derived
from the PSNR curve and theMSV D curve are shown in
Fig. 4(c) and (d) respectively. The application of single frame
post-deblurring (to offset the effect of input blur as well as
blur introduced by thresholding) based on the accelerated
Richardson-Lucy algorithm due to Biggs and Andrews [14]
(30 iterations) to each HR image in Fig. 4(c) and (d) yields
the results in Fig. 4(e) and (f), respectively. The PSNR-
based optimal threshold gives better noise filtering but poor
deblurring [see Fig. 4(c) and (e)] while theMSV D-based
optimal threshold produces a trade-off between introducedblur
and input noise filtering that produces output images with
better visual quality [see Fig. 4(d) and (f)]. For the HR image
in Fig. 4(d), the optimal thresholdζopt, as per theMSV D curve
plotted for the image was 0.14. From Table I, the near-optimal
threshold,ζ̃opt for the imaging conditions for this image (row
2 in the table) is 0.125, which is very close toζopt. The image
quality due to the use of̃ζopt was found to be almost identical
to the ones in Fig. 4(d) and (f) generated usingζopt, supporting
the use of near-optimal thresholds.

V. CONCLUSION

It has been shown that the choice of threshold is important
in the SGWSR algorithm. The inadequacy of PSNR andQ

(a)
 (b)


(c)
 (d)


(e)
 (f)


Fig. 4. (a) sample LR image; (b) original image; (c), (d) HR images based on
optimal threshold from PSNR andMSV D , respectively; (e), (f) HR images
in (c) and (d), respectively, after post-deblurring of input blur

for quantifying visual image quality prompted the use of the
MSV D metric to determine the threshold for optimal trade-off
between the blur introduced by thresholding and input noise
reduction in the reconstructed HR image. Supporting analysis
and simulation results are given. Subsequently, the use
of near-optimal thresholds (which depend on the imaging
conditions rather than the images) is proposed for improving
the visual quality of HR reconstructions in the SGWSR
algorithms.
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1 Introduction

Blind image deconvolution involves image restoration from degraded observation(s) with either

unknown or partially known information on the type and extent of the blur(s). A plethora of

single channel methods have been documented in [1], [2]. Among methods that generalize from

single frame (channel) blind deconvolution to the multiframe (multichannel) case is the iterative

one proposed by Biggs and Andrews [3]. Multichannel blind methods that do not have single

channel equivalents (however, similarities may exist as in [4]) have also been proposed [4], [5]. The

subspace technique [4] is non-iterative and like other approaches, gives erroneous results for low

signal-to-noise ratio (SNR) cases in comparison to iterative methods. The main advantage of the

multichannel approach arises because the single channel methods are ill-posed and ill-conditioned.

A multichannel blur imaging system model may result when image acquisition is through multi-

ple cameras as shown in Figure 1. Other possibilities leading to the same model is a consequence of

image capture through multiple focuses of a single camera or images acquired from a single camera

through a changing medium. Phase diversity permits restoration of target and unknown point

spread function by two-channel imaging, typically in-focus and out-of-focus. There is a natural

multichannel counterpart [6]. A ground-based telescope with a CCD or CMOS sensor can be used

to acquire images of the spot in the solar photosphere. These images are blurred by atmospheric

turbulence and refractive index fluctuation of the air caused by temperature variations.

The generic model in Figure 1 includes multichannel acquisition of an image sequence, a module

for image registration based on the projective model of camera motion parameter estimation [7],

[8], a module that simultaneously implements superresolution (using second generation wavelets)

and noise filtering by either soft or hard thresholding [9], [10], and a module for blind blur parame-
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ter with support estimation that ultimately produces the deblurred, noise filtered, superresolved

image. Finite support linear shift invariant blurs are reasonable to assume. The coprimeness
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with Noise Filtering
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with Noise Filtering


Projective model

Image registration


Multi-Channel Blur

with Support Estimation


and R-L IBD


Multiple Blurred,

Noisy LR Images


Multiple Blurred
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Deblurred and

Noise Filtered


HR Image


Cameras with

different PSFs


Figure 1: Multichannel Blind Superresolution Model

condition [11] on the zeros of the transfer functions representing the blurs, needed for restoration

from multiple deconvolution operators, if satisfied, is expected to produce a high quality deblurred,

noise filtered, superresolved image. This coprimeness condition is assumed to hold in the blind

identification of multichannel finitely supported blurs in perfect two-dimensional signal restoration

[12]. A multichannel high resolution blind image restoration scheme was also considered in [13].

A parameterized blur identification (when the blurring process is known only to within a set of

parameters) and resolution enhancement scheme which includes restoration as a special case, has

been reported in [14]. The iterative blind deconvolution (IBD) method originally proposed in [15]

was extended in [3] to multiple frames using the popular Richardson-Lucy (R-L) algorithm.

The focus of this paper is on generalizing the result in [3] to include not only multiple blur

identification but also support estimation of blurs that was assumed in [3] to be either known a
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priori or determined by trial and error. In addition, the paper also presents a derivation for the

asymmetry factor (discussed in greater depth in Section 3) required in the IBD algorithm instead

of employing a trial and error approach as proposed in [3], [16]. It is also pointed out that the

estimation of several unknown parameters for the problem of reconstruction of a high-resolution

(HR) image from multiple under-sampled, shifted, degraded frames with subpixel displacement

errors (for example, the model advanced by Bose and Boo [17]) has been considered recently in

[18].

In Section 2, the multichannel point spread function with support estimation is discussed. The

computational complexity of the procedure presented is analyzed and simulation results on real-

world as well as synthetic data are presented. In Section 3, the asymmetry factor in the modified

Biggs-Andrews (B-A) multiframe IBD is calculated for the case of interest here, i.e. procedure

presented using R-L IBD algorithm instead of least-squares as previously done in [16]. In Section

4, conclusions are drawn and the new results obtained in this paper are summarized.

2 Multichannel PSF with Support Estimation

The resulting HR images after the superresolution step in Figure 1 still need to be deblurred for the

best possible output image quality. But, in most practical cases, the blur of the acquisition system,

characterized by the point spread function (PSF) is unknown. In such cases, some of the approaches

that can be adopted are: the Biggs-Andrews (B-A) algorithm [3], the You-Kaveh regularization

based algorithm [19] and the Kundur-Hatzinakos recursive inverse filtering algorithm [20]. Though

the Kundur-Hatzinakos algorithm has the same computational complexity as the B-A algorithm,

it makes several restrictive assumptions (for instance, the existence of the inverse of the original

PSF) while the complexity of the You-Kaveh approach is very high. A more detailed comparison
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of these and other techniques is presented in [21].

Among the three mentioned algorithms, the B-A algorithm generalizes directly to the multi-

channel case. Since, in the superresolution problem, extra information in multiple high resolution

frames is available, it is desirable to use a method which can exploit it for improved image quality.

Hence the B-A algorithm is most suited for the multichannel case under consideration. Further,

the R-L iteration, which constitutes the core of the B-A algorithm, is a form of the expectation

maximization (EM) algorithm of Dempster et al. [22] (as shown by Shepp and Vardi [23]), which is

an efficient and widely used image restoration algorithm. The observed image is obtained by stack-

ing in 3-D the degraded 2-D observed images. The procedure then becomes similar to optimization

algorithms where one estimates two sets of parameters in the iteration by freezing one and updating

the other. A comment relevant to this type of technique (alternating minimization) is that proof of

convergence is usually not feasible without appropriate conditioning, even though the convergence

of the EM algorithm and hence the R-L iteration is well documented [22], [24]. However, extensive

simulations have confirmed under varying conditions (high observation noise, varying blur support

and initial over-estimate) that no difficulty in rapid convergence was witnessed. Instability is not

an issue when using R-L iterations since it can be shown [3] that successive iterates are bounded

from below by zero and from above by the total energy of the initial estimate (which is usually the

observation) which is finite.

2.1 The Biggs-Andrews Iterative Blind Deconvolution (IBD) algorithm

The B-A IBD algorithm is an alternating variable optimization approach to estimate both the

image and the PSF. It is flexible in the sense that different optimization techniques can be applied

for the image and the PSF updates respectively. Further, the algorithm takes into account different
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rates of convergence of the image and the PSF by allowing a different number of iterations for each

within the main alternating optimization loop. This approach is termed as ‘asymmetric IBD’. The

essence of the B-A algorithm is captured in the following figure (R-L update equations are used for

both image and PSF): The basic R-L update iterations are given by the equations

apply 
 m
  R-L iterations

to image 
 f
k


given PSF 
 h
k
 + 1


apply 
 n 
 R-L iterations

to PSF 
 h
k


given image 
 f
k


k
 = 
k
 + 1
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f
0
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 h
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f
k
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 + 1
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Figure 2: Biggs-Andrews (B-A) IBD algorithm

hk+1 =
1

∑

Ω
fk

hk · fk ⋆

(

g

hk ⊗ fk

)

(1)

fk+1 =
1

∑

ζk
hk+1

fk · hk+1 ⋆

(

g

hk+1 ⊗ fk

)

(2)

where g is the original observation, ·, ⋆ and ⊗ represent point-wise multiplication, correlation and

convolution, respectively, at every pixel location [i, j] ∈ Ω ⊂ R
2, where Ω is the support of the

image. Similarly, ζk ⊂ R
2 is the support of the PSF, hk. Acceleration and noise-dampening as

described in [3] is employed in the implementation though it is not shown in the iterations described

in Equations (1) and (2) above. Further details about the algorithm can be found in [3], [16]. The

initial estimate of the image, f0, is set to be equal to the observation, g. The initial estimate of

the PSF, h0, can be set to anything with the exception of zeros (one of the properties of the R-L

algorithm is that zero values remain unchanged over iterations). Biggs and Andrews [3] suggest the

use of the autocorrelation of the observed image as the initial estimate for the PSF. In the results
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presented here, a matrix with all values equal and which sums to unity over its support is used as

the initial estimate for the PSF. Termination of the iterations occurs when either the norm of the

difference between successive estimates falls below a certain preset value (ex: 10−3) or a maximum

number of iterations (ex: 30) is reached.

Drawback: The biggest drawback of the above mentioned algorithm is that it requires exact

knowledge of the support of the PSF for optimal performance. Thus, in a sense, it is not totally

blind. Typically, since there is no information about the PSF, its support is also unknown. In [3],

it is stated that when this information is unavailable, the only alternative is to over-estimate the

support of the PSF (so that it contains the actual support) in order to implement the deconvolution

to get the solution. This approach does not yield very good results as shown by simulation results

in Section 2.3. In addition, it increases the computational complexity of the algorithm. Under-

estimation of the PSF support leads to very poor deblurring.

One of the important features in the You-Kaveh algorithm is that it includes a module to

iteratively achieve better estimates of the actual support of the PSF, even though, like the B-A

algorithm, it also starts with an over-estimation of the support of the PSF. In order to ensure ease

of practical implementation, the approach in [19] involves pruning of the PSF support such that it

is always rectangular. Pruning of a boundary-constituting side δζk of the rectangular PSF support,

ζk, is carried out if

hk(x) 6 T, ∀ x ∈ δζk (3)

where T > 0 is a threshold (the threshold should be positive since a positivity constraint is imposed

on both the image and the PSF). This approach, though simple, is effective, provided a proper

threshold is chosen. Various simulations presented later in this document and in [19] have shown
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that this method reliably estimates the support of the PSF after a small number of iterations.

2.2 Enhanced Biggs-Andrews IBD with PSF Support Estimation

Since the You-Kaveh algorithm is basically designed for single channel deconvolution and better

image restoration can be achieved in the superresolution problem illustrated in Figure 1 by making

use of the multiple HR images, it is desirable to incorporate the iterative PSF support estimation

module into the B-A algorithm. The single channel case is first considered and the generalization

to the multichannel case is subsequently presented.

2.2.1 Single Channel PSF Support Estimation

Since the support estimation needs to be performed only on the PSF (the support of the image

is known), the module can be inserted at either location “1” or location “2” marked in Figure 2

that was used to describe the B-A algorithm. The following arguments present the advantages of

inserting the support pruning module at location “2” instead of location “1”:

• Consistency in the implementation of Equation 1 - the equation assumes that fk is the image

estimate when the PSF estimate is hk which is violated to a certain degree if hk is pruned

with fk remaining unchanged. On the other hand, insertion of the module at location “2”

does not violate any of the equations. See Figure 3 for the modification of Figure 2 introduced

here so that the blur support can be reliably estimated. Pruning is needed because of the

initial overestimate always made.

• Initial over-estimate of the PSF support can, possibly, be reduced by a certain degree before

an image update is performed

The updated depiction of the B-A algorithm is as shown in Figure 3 below. The condition for
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Figure 3: Modified form of the Biggs-Andrews (B-A) IBD algorithm

support pruning employed in the algorithm documented in this article is

k
∑

j=k−ℓ

hj(x) 6 T, x ∈ δζk (4)

which is similar to that employed in [19]. Here, hk represents the current (kth iteration) PSF

estimate, T the threshold, and δζk the outermost boundary of the current PSF support, ζk. The

main differences with the approach in [19] are that the amount of support pruning possible in each

iteration is restricted, and an option to include information about variation over the previous ℓ

iterations is provided. This results in the system being more robust to temporary fluctuations in

the PSF estimate. The threshold, T , is heuristically set to 10% of the energy of the PSF. Thus,

though the rule for the choice of the threshold is determined heuristically and is independent of the

type and support of the PSF, the actual value of the threshold depends on the energy of the PSF.

2.2.2 Multichannel PSF Support Estimation

The single PSF case of the B-A IBD algorithm can be easily extended to the multiple PSF case.

That is, we consider imaging process given by

gn = f ⊗ hn, n = 1, 2, . . . ,N (5)
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where f is the original image, gn represents the nth blurred observation and hn is the corresponding

PSF. To formulate this as a 3-D extension of the single channel case, it should fit into the framework

of the R-L equations ((1) and (2)) which are used for alternatively updating the image and PSF

estimates. Essentially, the R-L equation is an iterative maximum likelihood (ML) approach to

estimate one of the terms in the RHS of

g = f ⊗ h (6)

given the LHS and the other term in the RHS. Hence, to extend the IBD algorithm to the multi-

channel case, Equation (5) needs to be written in 3-D matrix form and 3-D versions of the operators

in Equations (1) and (2) are to be used. This is easily achieved as follows:

g[i, j, n] = f [i, j, n] ⊗ h[i, j, n], n = 1, 2, . . . ,N (7)

where ⊗ represents 3-D convolution. The values of g and h for fixed values of the 3rd dimension, n,

represent the N blurred observations and PSFs respectively; in other words, the blurred observa-

tions and PSFs are stacked one behind the other. The signal f can now be viewed as a 3-D signal

with f [i, j, 1] being the original image and with f [i, j, n] = 0, n = 2, 3, . . . ,N . Thus, the R-L equa-

tion can be applied, and consequently IBD can be carried out for the multichannel case. The main

difference to note is that in this case, the initial estimate for the image, f0, and the observation,

g, are not the same since the initial estimate has just one non-zero frame (to maintain the validity

of Equation (7)). This is in contrast to the single channel case where the initial image estimate is,

with very few exceptions, set equal to the observed image. The initial estimates of the PSF’s how-

ever are set to be matrices with equal elements summing to unity, similar to the single-channel case.

The PSF support estimation module works independently on each of the PSF’s and iteratively

arrives at the correct support for each of the PSF’s, though different number of iterations may
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be required for convergence to the true support. Further, the threshold employed for support

estimation will, in general, be different for each channel since the threshold is set to be 10% of the

energy of the PSF. The next subsection presents simulation results which show the improvement in

restoration quality achieved by the B-A algorithm with the use of the support estimation module.

It also demonstrates the accuracy of the module in estimating the support of the PSF.

2.3 PSF Support Estimation: Simulation Results

Results for the single channel case are first presented followed by those for the multichannel case.

The results show the importance and effectiveness of the iterative support estimation module. Sin-

gle channel results are presented for two images: one real-world image and the other a synthetic

image. Simulation results for the synthetic image for a two PSF case and a four PSF case are

subsequently given. The synthetic image is designed such that it presents difficulties to the restora-

tion algorithm (due to the very sharp contrast and transitions in the image). In a sense, it can be

thought of as a stress-test for the algorithm. Also, different PSF’s are used for generality.

For the results in Figures 4(b) and 4(d), the original image, PSF (support 5×5) and the blurred

observation are shown in Figure 4(a). The results in Figure 4(d) are generated using the original

Biggs-Andrews algorithm with different guesses for the support of the PSF. As seen from the figure,

over (9 × 9 and 7 × 7) and under (3 × 3) estimation of the PSF support results in poor quality

of restoration. Over-estimation results in inaccurate restorations - the grey squares in the original

image for example, appear as white in the restoration. Under-estimation of the support size results

in the output remaining significantly blurred. On the other hand, if the support of the PSF is

guessed correctly/known a priori (5 × 5), then the original Biggs-Andrews algorithm yields good

restoration results. But the support of the PSF is seldom known in blind deconvolution problems

11



and arriving at it by trial and error is impractical. Figure 4(b) shows the result generated for

the same input using the proposed support pruning module. Though the support is initially over-

estimated as 9× 9, the algorithm iteratively arrives at the correct support as shown in Figure 4(c).

It is also evident that the restored image and PSF are of very similar quality as that produced by

the original Biggs-Andrews algorithm when the support is known a priori (5×5 case in Figure 4(d)).

Comments/inferences similar to those made above are applicable to the results presented for the

real-world image in Figures 5(a), 5(b), 5(c) and 5(d). It is noted that over-estimation of the support

of the PSF in the original B-A algorithm (13 × 13 and 9× 9 cases in Figure 5(d)) causes excessive

ringing artifacts at the boundaries and edges while under-estimation (5 × 5 case of Figure 5(d))

results in insufficient deblurring. If the support is known a priori or arrived at by trial and error,

then the best possible quality of restoration is achieved as seen from the 7× 7 case in Figure 5(d).

On the other hand, if the proposed algorithm with support estimation is employed, the restoration

is of good quality (Figure 5(b)) even if the support of the PSF is initially over-estimated, since the

algorithm iteratively arrives at the correct support as shown in Figure 5(c).

In the multichannel cases presented subsequently, it is observed that the PSF support estimation

module accurately estimates the support of the PSF in each of the channels, though the type and

support of the PSF in each channel is different. Further, it is also noted that the convergence to

the true support in each channel, as expected, takes different number of iterations. The quality of

the restoration is also much better than in the single channel case due to the availability of more

information in the form of multiple blurred observations.
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Synthetic Image checkerboard (64 × 64 pixels)

True PSF 5 × 5 Gaussian with variance 10

Noise additive white Gaussian, zero mean, variance 0.0001

=


Figure 4(a): Original image, original PSF, and noisy, blurred image respectively

Figure 4(b): Restored image and PSF with support estimation respectively
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Figure 4(c): Iterative PSF support estimation (initial over-estimate: 9 × 9)
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9 x 9


7 x 7


5 x 5


3 x 3


Figure 4(d): Restorations with different guesses for PSF support (without support estimation)
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Real-world Image bridge (512 × 512 pixels)

True PSF 7 × 7 Out-of-Focus/Circular

Noise additive white Gaussian, zero mean, variance 0.0001

Figure 5(a): Original image, original PSF, and noisy, blurred image respectively
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Figure 5(b): Restored image and PSF with support estimation respectively
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Figure 5(c): Iterative PSF support estimation (initial over-estimate: 13 × 13)

16



13 x 13


9 x 9
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7 x 7


5 x 5


Figure 5(d): Restorations with different guesses for PSF support (without support estimation)
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Synthetic Image checkerboard (64 × 64 pixels)

True PSFs 3 × 3 Gaussian with variance 10

5 × 5 Out-of-Focus/Circular

Noise additive white Gaussian, zero mean, variance 0.001

Figure 6(a): Original image, original PSFs and corresponding noisy, blurred images respectively

Figure 6(b): Restored image and PSFs with support estimation respectively
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Figure 6(c): Iterative support estimates for the two restored PSFs
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Synthetic Image checkerboard (64 × 64 pixels)

True PSFs 7 × 7 Gaussian with variance 10

5 × 5 Out-of-Focus/Circular

7 × 7 Gaussian with variance 2.5

3 × 3 Averaging

Noise additive white Gaussian, zero mean, variance 0.001

Figure 7(a): Original image, original PSFs and corresponding noisy, blurred images respectively
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Figure 7(b): Restored image and PSFs with support estimation respectively
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Figure 7(c): Iterative support estimates for the four restored PSFs
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2.4 Complexity Savings due to Iterative Support Estimation

It has been shown above that the quality of the deconvolved output in the B-A algorithm is sensi-

tive to the support of the initial guess for the PSF. The advantages of employing an iterative PSF

support estimation (by pruning) similar to the You-Kaveh algorithm have also been demonstrated.

In the following section, the savings in computation due to the iterative PSF support estimation

module are analyzed.

The basic R-L iterations are given by Equations (1) and (2). For minimum computational

complexity, the convolution and correlation operations are carried out in the Fourier domain. The

above equations can then be rewritten as:

hk+1 =
1

∑

Ω
fk

hk · F−1

(

F ∗

k · F
(

g

F
−1(Hk · Fk)

))

(8)

fk+1 =
1

∑

ζk
hk+1

fk · F−1

(

H∗

k+1 · F
(

g

F
−1(Hk+1 · Fk)

))

(9)

where ∗ represents complex conjugation, F and F
−1 represent the Fourier and inverse Fourier

transform operators respectively, and X denotes the Fourier transform of the signal x.

For a real signal of length N , it can be easily shown that the computation of the Fourier trans-

form and its inverse require O(N log2(N)) operations. It can also be shown that the complexity of

an n-dimensional Fourier transform and its inverse is the same as that of a one-dimensional signal

of length equal to the product of the dimensions of the n-dimensional signal.

Assuming the image to be of size M × N and the PSF estimate to be of size P × Q, the

complexity of implementing each of the terms in Equation (8) are listed below based on the above
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paragraph and the definitions

C(X) , Cm(X) + Ca(X)

Cm(X) ,
3

2
X log2(X) − 5X + 8

Ca(X) ,
7

2
X log2(X) − 5X + 8

where Cm(X) indicates the number of multiplications required for an X-point FFT and Ca(X) is

the corresponding number of additions.

List of Computation Complexities

computation of Fk C(MN)

computation of Hk C(MN)

(note that the DFT of hk should

be the same dimension as that of fk)

computation of tm1 , F
−1 (Hk · Fk) C(MN) + MN

computation of tm2 , g/tm1 MN

computation of tm3 , F(tm2) C(MN)

computation of tm4 , F
−1 (F ∗

k · tm3) C(MN) + MN

computation of hk+1 2PQ + MN

The list for implementing Equation (9) is the same as above except for the last item on the

list, whose complexity is 2MN + PQ. Thus, the PSF and image update equations above have net

complexities O(5C(MN) + 4MN + 2PQ) and O(5C(MN) + 5MN + PQ), respectively. Further,

in one iteration of the B-A algorithm, the PSF is updated n times and the image m times. Let K

represent the total number of iterations of the B-A algorithm. Suppose that the support estimation

routine converges to the true size of the PSF, P̂ × Q̂, in L iterations (for simplicity, it is assumed
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that there is a dimensionality reduction of 2 in each dimension for each of the L iterations). Then,

the savings in computational complexity due to the support estimation routine is

O

(

(n + m)

(

(K − L)(PQ − P̂ Q̂) +
L(L + 1)

2
(P + Q)

))

For the multichannel case, the savings in complexity due to the iterative support estimation deter-

mined above applies to all the PSF’s (the extent of savings will naturally be different depending

on the actual support of the individual PSF’s).

3 Asymmetry Factor for R-L IBD Algorithm

The asymmetry introduced into the IBD algorithm by Biggs is an important factor deciding the

quality of the deblurred output image [16]. Biggs (in [16]) derived an expression for the asymmetry

factor, AFk, for the case of the least-squares error metric based optimization approach to blind

deconvolution. The derived expression was based on the approximation of the rate of convergence

of the image and PSF estimates to the traces of the corresponding Hessian matrices for the error

metric

e = ‖g − hk ⊗ fk‖2 (10)

The remainder of this section presents a method of computing the asymmetry factor, AFk, for the

case of the R-L IBD as an alternative to employing a trial and error based approach as suggested

in [3], [16].

The metric employed here is the log-likelihood which is given by

L(g|fk, hk) =
∑

Ω

g log rk − rk (11)

where rk is the reblurred image at the kth iteration used in the R-L update equations and is given
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by

rk = hk ⊗ fk (12)

For notational convenience, the Equation (11) is written as

L =
∑

x∈Ω

g(x) log rk(x) − rk(x) (13)

where x is the 2-D coordinate [x1, x2] and Ω ⊂ R
2 is the support of the image, i.e. of all of g, fk,

and rk. Also,

rk(x) = hk(x) ⊗ fk(x)

=
∑

t∈ζk

hk(t)fk(x − t) (14)

where ζk ⊂ R
2 is the support of the PSF hk and t is the 2-D coordinate [t1, t2]. Further, x and t in

the above expressions are assumed to have a lexicographical ordering. The aim now is to construct

the Hessian matrices of the objective function given by Equation (11) with respect to the image

and the PSF estimate. Consider the case of the image estimate first. The partial derivative of L

with respect to fk(y) where y ∈ Ω ⊂ R
2 is given by

∂L
∂fk(y)

=
∂

∂fk(y)

(

∑

x∈Ω

g(x) log rk(x) − rk(x)

)

=
∑

x∈Ω

g(x)
1

rk(x)

∂

∂fk(y)
(rk(x)) − ∂

∂fk(y)
(rk(x))

=
∑

x∈Ω

(

g(x)
1

rk(x)
− 1

)

∂

∂fk(y)
(rk(x)) (15)

(noting that g(x), the stack of observed images, is independent of fk(y))
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Using the definition of rk(x) from Equation (14)

∂

∂fk(y)
(rk(x)) =

∂

∂fk(y)





∑

t∈ζk

hk(t)fk(x − t)





=
∂

∂fk(y)





∑

(x−t)∈ζk

fk(t)hk(x − t)





=















hk(x − y) for (x − y) ∈ ζk

0 otherwise

(16)

Hence, substituting Equation (16) in Equation (15),

∂L
∂fk(y)

=
∑

(x−y)∈ζk

(

g(x)

rk(x)
− 1

)

hk(x − y) (17)

In the above derivation, the periodic boundary condition was assumed for the image. Proceeding

further, the second order partial derivative with respect to fk(z), z ∈ Ω, is

∂2L
∂fk(z)∂fk(y)

=
∂

∂fk(z)





∑

(x−y)∈ζk

(

g(x)

rk(x)
− 1

)

hk(x − y)





=
∑

(x−y)∈ζk

hk(x − y)
∂

∂fk(z)

(

g(x)

rk(x)
− 1

)

=
∑

(x−y)∈ζk

hk(x − y)g(x)
∂

∂fk(z)

(

1

rk(x)

)

=
∑

(x−y)∈ζk

−hk(x − y)g(x)
1

r2

k(x)

∂

∂fk(z)
(rk(x)) (18)

Using the result for the partial derivative of rk(x) obtained in Equation (16),

∂2L
∂fk(z)∂fk(y)

=
∑

((x−y)∈ζk)∩((x−z)∈ζk)

−hk(x − y)hk(x − z)
g(x)

r2

k(x)
(19)

The above equation defines the Hessian matrix of the objective function given by Equation (11) with

respect to the image estimate. Due to the presence of the term g(x)

r2

k
(x)

, the Hessian matrix generated

by the generic element in Equation (19) will, in general, not be circulant or even Toeplitz. If

g(x)

r2

k
(x)

= 1 (or a constant), then the matrix is a circulant [19]. Thus, the properties of circulant
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matrices cannot be exploited (as in the least-squares error case considered by Biggs in [16]) for

finding the trace of the Hessian matrix. Only the diagonal elements need to be computed to

find the trace of the symmetric matrix generated by the generic element in Equation (19). This

corresponds to the case z = y in equation (19). Therefore,

∂2L
∂f2

k (y)
=

∑

(x−y)∈ζk

−h2

k(x − y)
g(x)

r2

k(x)
(20)

From the above formula, it can be seen that the RHS of Equation (20) will contain as many terms as

card(ζk), the cardinality of the support of the PSF, since periodic boundary condition is assumed.

Consequently, the trace of the Hessian matrix will be given by

Λfk
,
∑

y∈Ω

∂2L
∂f2

k (y)
=
∑

y∈Ω

∑

(x−y)∈ζk

−h2

k(x − y)
g(x)

r2

k(x)
(21)

The expression for Λfk
given in Equation (21) contains all the elements ∈ Ω. Further, with a little

thought, it can be seen from Equation (21) that each element of Ω will appear card(ζk) times with

each appearance being weighted by a distinct element of hk. From this observation, the computa-

tion of the trace is relatively straightforward.

The Hessian matrix of the objective function given by Equation (11) with respect to the PSF

estimate can be obtained in a similar manner as outlined above and is briefly presented below.

∂L
∂hk(y)

=
∂

∂hk(y)

(

∑

x∈Ω

g(x) log rk(x) − rk(x)

)

=
∑

x∈Ω

(

g(x)
1

rk(x)
− 1

)

∂

∂hk(y)
(rk(x)) (22)

Using the definition of rk(x) from Equation (14)

=















fk(x − y) for y ∈ ζk

0 otherwise

(23)
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Hence, substituting Equation (23) in Equation (22),

∂L
∂hk(y)

=
∑

y∈ζk

(

g(x)

rk(x)
− 1

)

fk(x − y) (24)

The generic element of the Hessian matrix is then obtained as

∂2L
∂hk(z)∂hk(y)

=
∑

y∈ζk

−fk(x − y)g(x)
1

r2

k(x)

∂

∂hk(z)
(rk(x))

=
∑

(y∈ζk)∩(z∈ζk)

−fk(x − y)fk(x − z)
g(x)

r2

k(x)
(25)

Again, due to the presence of the term g(x)

r2

k
(x)

, the Hessian matrix generated by the generic element

in Equation (25) will, in general, neither be circulant nor be Toeplitz. As in Equations (20) and

(21), the trace, Λhk
, of the Hessian can be computed.

The asymmetry factor, AFk is then computed as given by Biggs:

AFk = E∞

∑

ζk
hk

∑

Ω
fk

.
1

γk

(26)

where γk =
|Λfk

|
|Λhk

|

and E∞ =

∑

ζk
h2

∑

Ω
f2

∑

Ω
f

∑

ζk
h

with f and h representing the original image and PSF. Since this information is unknown, an

estimate of the value of E∞ is usually employed. As stated by Biggs [16], an over estimate yields

much closer performance to the optimum than an under estimate. The R-L IBD algorithm is

pictorially depicted by Figure 8 (refer [16]).

3.1 Asymmetry Factor: Simulation Results

A simulation result is presented to compare the performance of the R-L IBD with automatic in-loop

estimation of the asymmetry factor AFk, against that of the R-L IBD with manual tuning of the
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Figure 8: Modified R-L update based Asymmetric IBD algorithm

fixed asymmetry ratio. The four channel case presented earlier is considered for comparison. Figure

9 shows the restoration results for both cases, from which it is clear that the performance of the

R-L IBD with automatic in-loop estimation of the asymmetry factor AFk closely matches that of

the optimally tuned R-L IBD with a fixed asymmetry ratio.

4 Conclusions

In the IBD algorithm shown in Figure 2, the integers m and n which are representative of the

convergence rates of the image and point spread function updates, respectively, are not equal

(asymmetric IBD) and the image-dependent asymmetry factor n/m was selected by trial-and-error

(manual tuning). The main contributions of this paper are: first, the insertion of a support estima-

tion (by pruning) module for each finitely supported PSF as shown in Figure 3, and, second, the

computation of the asymmetry factor by finding the traces of the respective Hessian matrices whose

generic elements were calculated in Equations (19) and (25). The computation of the traces, natu-

32



manually tuned
 original
 automatic


Figure 9: Restoration using R-L IBD with automatic in-loop estimation of asymmetry factor, AFk
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rally, involves the finding of only the diagonal elements of these matrices, as given in Equation (20)

and its counterpart that is readily derivable from Equation (25). These contributions to multiframe

blind deconvolution of image sequences degraded by multiple blurs in conjunction with the already

developed algorithms for superresolution and simultaneous noise filtering using second generation

wavelets and thresholding [9], [10], as shown in Figure 1, will contribute significantly towards the

goal of obtaining a superresolved, deblurred and noise filtered image from image sequences acquired

with video cameras.
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Abstract— An irregularly spaced sampling raster formed from
a sequence of low resolution frames is the input to an image
sequence superresolution algorithm whose output is the set of
image intensity values at the desired high resolution image grid.
The method of moving least squares (MLS) in polynomial space
has proved to be useful in filtering the noise and approximating
scattered data by minimizing a weighted mean square error
norm, but introducing blur in the process. Starting with the
continuous version of the MLS, an explicit expression for the
filter bandwidth is obtained as a function of the polynomial
order of approximation and the standard deviation (scale) of
the Gaussian weight function. A discrete implementation of the
MLS is performed on images and the effect of choice of the two
dependent parameters, scale and order, on noise filtering and
reduction of blur introduced during the MLS process is studied.

Index Terms— moving least squares, Hermite polynomials,
superresolution

I. I NTRODUCTION

Most approaches to noise filtering in images, ranging from
weighted least squares [1] and weighted total least squares [2]
to bilateral filtering [3] assess image quality by calculating
either the mean square error (MSE) or the peak signal-to-
noise ratio (PSNR). Other measures of visual quality have
been considered including most recently [4] a measure based
on singular value decomposition (MSV D) of the image matrix,
introduced first in [5]. Noise filtering with superresolution
has been implemented in several approaches starting with
[1] and leading upto current approaches [6]. The problem on
deblurring the input blur present in low-resolution (LR) frames
has been tackled in various ways [2] [7]. Post-processing
has been the main recourse for input blur removal in blind
superresolution, where the blurs have to be estimated. Note
that the blur parameters and the respective blur supports can
be estimated from the LR frames in a pre-processing step [8,
and references therein], but the actual deblurring should be
performed after the image fusion as a post-processing step
[7], [9]. In a recent paper, the idea of implementing deblurring
and interpolation simultaneously has been pursued [10] in the
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case of known or a priori estimated blurs (atmospheric and
camera) and an underdetermined system of linear equations
that result from minimization. This underdetermined system
occurs when the number of framesNf < r2, where r is
the resolution enhancement factor along each direction. Blurs
can also appear during denoising of an unblurred but noisy
input. For example, in [4] and [6], the promising technique
of wavelet-coefficient thresholding introduces undesirable blur
necessitating the choice of an optimal threshold (the only
parameter) for tradeoff between blur removal (introduced by
thresholding) and noise filtering. The objective of this paper
is to continue the investigation into tradeoff between the
opposing effects of noise and introduced blur in other methods
that apply to multiframe superresolution. The method of choice
for such a study in this paper is that of (weighted) moving least
squares recently used in single frame image processing [11]
[12].

Moving Least Squares (MLS) is a local approximation
method that has been documented in [13, Ch.4]. Here, its scope
in a problem of current interest, namely superresolution, is
investigated. Consider the irregularly sampled raster in Figure
1 generated by the sequence of LR frames captured by a video
camera whose motion parameters may be described by the
general projective model [14]. The goal of superresolution
is to convert this irregularly sampled raster in Figure 1 to
a regularly sampled one where this regularly sampled raster
is comprised of grid points at equispaced intervals along
each of the coordinate axis. The pixel value at each grid-
point is computed with a polynomial approximant using the
pixels in a defined neighborhood of the grid-point under
consideration. Since the defined neighborhood may change
from one grid-point to the next, the coefficients as well as the
order of the polynomial approximant has to be adaptive. The
MLS approach to superresolution, discussed here, mandates
the choice of two parameters for optimal trade-off between
introduced blur and noise filtering. The two parameters are the
order of approximation and a scale parameter characterizing
the standard deviation of the Gaussian weight function for
the predictor function coefficients as described next. For an
overview of various superresolution techniques, see [15].

II. CONTINUOUS MOVING LEAST SQUARESAS AN

EQUIVALENT FILTERING OPERATION

For d-variate polynomial interpolation, the space of interest
is the spaceΠd

s of d-variate polynomials of total degree≤ s.
Since the dimension of this polynomial space is (for a proof,
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Fig. 1. Irregularly sampled raster superimposed on HR grid

see [13, pp.20-21])

Md
s ,

(
s + d

s

)
,

multivariate interpolation requires the consideration of a set
of sample points (nodes) of cardinality at leastMd

s . The
problem of characterizing nodes that admit unique Lagrange
interpolation has been extensively documented. Hermite in-
terpolation allows coalescence of nodes along a line while
coalescence of nodes along a plane gives rise to the more
general Birkhoff interpolation. It is easy to show that, unlike
in the univariate case, a set of distinct points may not admit
a unique Lagrange interpolation in the multivariate case.
For interpolation by multivariate polynomials inΠd

s to be
possible, the data sets have to be restricted [13, pp.19]. Due
to the fundamental complexities in multivariate interpolation,
it is expedient to sacrifice the global approach in favor of
local surface approximation approaches as was done in [7]
and the MLS approach [11] [12] for image approximation
and interpolation (bivariate case). In the MLS method, the
optimal fitting function is expressed as a linear combination
of basis functions, whose coefficients are chosen to minimize
the weighted mean squared error (MSE) between the signal
and its approximant. The MSE is generated by moving the
fitting function coefficient mask from position to position in
the image plane. The primary difference between the approach
in [11] [12] and the approach in this paper is the incorporation
of a variable scale in the weight function and variable order
of approximant so as to capture better the distribution of
irregularly spaced samples in the problem.

To analyze the effect of the choice of scale and order on
blur and noise in the reconstructed high-resolution image, a
continuous formulation of MLS is used. Moreover, for the
sake of simplicity, the analysis is initially carried out for a
1-D signal. The generalization to 2-D, in product separable
form, is reasonably straightforward and is explained later in
this section.

A. Analysis of 1-D Case

Here, we summarize, first, the results described by Boom-
gard and Weijer [11] and Fenn and Steidl [12], before deducing
the formula for filter bandwidth as a function of the two
parameters, scale and order. In thed = 1 case, let the function

to be approximated by MLS bef(x). Locally, about a fixed
but arbitrary pointx0, the function is approximated as a linear
combination of basis functionsφ0(x), φ1(x), . . . , φk(x). If the
basis functions are the monomials1, x, . . . , xk respectively,
then this approximation can be viewed as the truncated Taylor
series expansion off(x) aboutx = x0. The approximation of
f(x) aboutx = x0 is denoted aŝf(x). Then, thekth order
approximant is,

f̂(x) = a0(x0)φ0(x− x0) + · · ·+ ak(x0)φk(x− x0). (1)

The coefficients in the above expansion depend onx0. For
the sake of brevity, the argumentx0 will be dropped from
the notation and the coefficients will be referred to simply as
ai, i = 0, . . . , k. These coefficients are found by minimizing
the weighted norm‖f(x) − f̂(x)‖2w, which is the weighted
MSE. The weighting function,w(x), is such that the points
close to the originalx0 are weighted higher than the points
far from x0. Thus the approximation off(x) by f̂(x) is made
local in nature by the choice ofw(x). A typical choice for
w(x) (ubiquitous in adaptive system theory, e.g. [16]) is the
Gaussian function

w(x) =
1

σ
√

2π
e−x2/2σ2

, (2)

having scale (standard deviation)σ. From standard least-
squares theory, the set of coefficientsai, i = 0, . . . , k that
minimizes the weighted MSE is the solution to the following
system of linear equations [11]:


〈f, φ0〉w

...
〈f, φk〉w


 =



〈φ0, φ0〉w . . . 〈φk, φ0〉w

...
.. .

...
〈φ0, φk〉w . . . 〈φk, φk〉w







a0

...
ak


 ,

(3)
where,〈f, φi〉w and 〈φi, φj〉w are defined as,

〈f, φi〉w =
∫ ∞

−∞
f(u)φi(u− x0)w(u− x0)du

〈φi, φj〉w =
∫ ∞

−∞
φi(u− x0)φj(u− x0)w(u− x0)du .

Instead of the monomials1, x, . . . , xk, scaled Hermite poly-
nomials of order uptok can be chosen as the basis functions.
The Hermite polynomial,Hn(x), of ordern is defined as

Hn(x) = (−1)nex2 d

dx

(
e−x2

)
. (4)

Hermite polynomials upto orderk span the same space as
monomials upto orderk, but are orthogonal with respect to
the Gaussian weighting functionw(x), i.e.

∫ ∞

−∞
Hm(x)Hn(x)e−x2

dx = δmn2nn!
√

π ,

whereδmn is the Kronecker delta function. By choosing the
basis functions asφk(x) = Hk(x/σ

√
2), the matrix (called

Gram matrix) in Eq. (3) becomes diagonal [12] and the
diagonal elements are‖φi‖2w = 2ii!. Using this in Eq. (3),
the coefficientsai, i = 0, . . . , k are easily shown to be

ai =
〈f, φi〉w
‖φi‖2w

=
〈f, φi〉w

2ii!
. (5)
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Then, from Eq. (1),

f̂(x) =
k∑

i=0

aiφi(x− x0) =
k∑

i=0

〈f, φi〉w
2ii!

φi(x− x0).

The equation above is an approximation off(x), locally
around x = x0. The value of the approximant̂f(x0) is
obtained by evaluating the preceding equation atx = x0 to
get

f̂(x0) =
k∑

i=0

〈f, φi〉w
2ii!

φi(0) =

〈
f,

k∑

i=0

φi(0)φi

2ii!

〉

w

.

Define

h(x) ,
k∑

i=0

φi(0)φi(x)
2ii!

. (6)

Then,

f̂(x0) = 〈f, h〉w =
∫ ∞

−∞
f(u)h(u− x0)w(u− x0)du

=
∫ ∞

−∞
f(x0 + u)h(u)w(u)du,

and f̂(x0) can be obtained by linear shift-invariant filtering
of f(x0 + x) with a system characterized by the unit impulse
responseh(x)w(x). It is desired to find the bandwidth of the
filter whose unit impulse response is (using Eq. 6)

g(x) = h(x)w(x) =
k∑

i=0

φi(0)φi(x)
2ii!

w(x). (7)

In the Appendix, it is proved that the bandwidth∆2
ω is

explicitly computable in terms of the standard deviationσ and
the orderk = 2l or k = 2l + 1 as given next

∆2
ω =

1
2σ2


1 +

4
∑l

i=0

∑l
j=0

i[2(i+j)]!
8i+ji!j!(i+j)!∑l

i=0

∑l
j=0

[2(i+j)]!
8i+ji!j!(i+j)!


 . (8)

Before proceeding to understand the implications of the above
expression, the linear shift-invariant system theory based
analysis performed in this subsection is extended to 2-D
signals.

B. Generalization to Separable 2-D

Suppose that it is desired to approximate the functionf(x) ,
f(x, y) at a pointx0 , (x0, y0). The functionf(x) can be
approximated locally aroundx0 by a linear combination of
the basis functionsφij(x) , φij(x, y), i = 1, . . . , k1 and
j = 1, . . . , k2.The estimatêf(x, y) about(x0, y0) is, therefore,
expressed as,

f̂(x, y) =
k∑

i=0

k∑

j=0

aijφij(x− x0, y − y0), (9)

where, without loss of generality,k1 = k2 = k. Like in the 1-D
case, the coefficientsaij are found by minimizing the weighted
norm ‖f(x, y) − f̂(x, y)‖2w, where the weighting function,
w(x, y), is chosen to be product separable counterpart of Eq.

(2):

w(x, y) =
1

2πσ2
e−(x2+y2)/2σ2

= w(x)w(y). (10)

The basis functionsφij(x, y) are chosen as the bivariate
Hermite polynomialsHij(x/σ

√
(2), y/σ

√
(2)) in product

separable form,

φij(x, y) = φi(x)φj(y). (11)

The sum of the highest degrees ofφi(x) andφj(y) chosen is
the order of approximation. Here, the order of approximation
is 2k. The value of the function atx0 is then estimated by
evaluating the polynomial function in Eq. (9) atx = x0.
Similar to Eq. (5), the coefficientsaij can be found as

aij =
〈f, φij〉w
‖φij‖2w

. (12)

Using Eq. (12) in Eq. (9) results in

f̂(x, y) =
k∑

i=0

k∑

j=0

〈f, φij〉w φij(x− x0, y − y0)
‖φij‖2w

which, evaluated at(x, y) = (x0, y0) yields,

f̂(x0, y0) =
k∑

i=0

k∑

j=0

〈f, φij〉w φij(0, 0)
‖φij‖2w

=

〈
f,

k∑

i=0

k∑

j=0

φij(0, 0)φij

‖φij‖2w

〉

w

. (13)

Again, as in the 1-D case of Eq. (7), the equivalent filter unit
impulse response is

g(x, y) =
k∑

i=0

k∑

j=0

φij(0, 0)φij(x, y)
‖φij(x, y)‖2w

w(x, y). (14)

Using the separability of the basis functions and the weight
function, the above expression simplifies to

g(x, y) =

(
k∑

i=0

φi(0)φi(x)
‖φi(x)‖2w

w(x)

) 


k∑

j=0

φj(0)φj(y)
‖φj(y)‖2w

w(y)




, g1(x)g2(y), (15)

whereg1(x) and g2(y) are the summations in the respective
brackets. The 2-D Fourier transform (FT) ofg(x, y) is

G(ω1, ω2) =
∫ ∞

−∞

∫ ∞

−∞
g1(x)g2(y)e−j(ω1x+ω2y)dxdy

=
(∫ ∞

−∞
g1(x)e−jω1xdx

)(∫ ∞

−∞
g2(y)e−jω2ydy

)

, G1(ω1)G2(ω2), (16)

whereG1(ω1) andG2(ω2) are the integrals in the respective
brackets. Finally, the radial bandwidth of this filter is

∆2
ω1,ω2

=

∫∞
−∞

∫∞
−∞(ω2

1 + ω2
2)|G(ω1, ω2)|2dω1dω2∫∞

−∞
∫∞
−∞ |G(ω1, ω2)|2dω1dω2

= ∆2
ω1

+ ∆2
ω2

,
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where,

∆2
ω1

=

∫∞
−∞

∫∞
−∞ ω2

1 |G1(ω1)|2|G2(ω2)|2dω1dω2∫∞
−∞

∫∞
−∞ |G1(ω1)|2|G2(ω2)|2dω1dω2

=

∫∞
−∞ ω2

1 |G1(ω1)|2dω1∫∞
−∞ |G1(ω1)|2dω1

.

and∆2
ω2

, is defined likewise. Thus, the 1-D result is sufficient
to evaluate the separable 2-D case too.

C. Inferences

The analysis of the previous two subsections shows that
the MLS technique can be viewed as a filtering operation. An
expression for the bandwidth of this filter is given in Eq. (8).
The following observations can be made from this expression:

1) An increase in scale causes a decrease in bandwidth
and vice versa. This result is intuitively appealing since
a larger scale means that the support of the weighting
function w(x) and hence of the filter unit impulse
responseg(x) is larger, which causes greater averaging
or smoothing (blurring). In the frequency domain, this is
equivalent to a reduction in bandwidth, which produces
more noise filtering.

2) The expression for dependence on order is seemingly
complicated. A plot of filter bandwidth at a fixed scale
versus the order, described in Eq. (8), is shown in Figure
2. The plot shows that bandwidth increases approxi-
mately linearly with filter order. This is not surprising
either since by using a higher order, rapid changes (or
high-frequency components) in the original signal can be
modelled more accurately. Again, in frequency domain
terms, this is equivalent to an increase in bandwidth that
admits more noise.

For image sequence superresolution, the above two effects
result in a tradeoff between noise in the reconstructed image
and the blur introduced by the MLS process. Increasing scale
lowers the bandwidth of the filter resulting in greater noise
filtering but more output blur. Increasing order increases the
bandwidth of the filter thereby reducing the blur introduced
by the process at the expense of increased noise in the
reconstructed image.

III. MLS A PPLIED TO IMAGE SUPERRESOLUTION

In image superresolution, the input is known at a set
of irregularly spaced discrete data points generated from a
sequence of registered LR frames and the aim is to estimate
the image intensity on the regularly sampled raster of the HR
grid. For this, a discrete implementation of the MLS procedure
is used. In this section, the discrete formulation of MLS
is explained, its similarity to local polynomial regression in
statistics is pointed out and a technique to adaptively select the
scale and order parameters for estimating the image intensity
at each point of the HR grid is described.

A. Discrete MLS

Given the samples of a functionf(x) , f(x1, x2) at
N points xm , (xm1 , xm2),m = 1, . . . , N , it is de-

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8
Filter bandwidth vs order/2,σ =1

Fig. 2. Filter bandwidth vs order/2

sired to estimate the value of the function at some ar-
bitrary but fixed point x0. Locally about x0, the func-
tion is expressed a linear combination of basis functions
φ0(x), φ1(x), . . . , φk(x). If the basis functions are the bivari-
ate monomials1, x1, x2, x

2
1, x1x2, x

2
2, . . . ,etc., then this can be

viewed as the Taylor series expansion off(x) aboutx = x0.
Denote the approximation off(x) about x = x0 by f̂(x).
Then,

f̂(x) = a0φ0(x− x0) + · · ·+ akφk(x− x0). (17)

The coefficientsai, i = 0, . . . , k are found by minimizing the
weighted norm‖f(x) − f̂(x)‖2w, where the weight function
w(x) , w(x1, x2) is chosen to be the circularly symmetric
bivariate Gaussian function given by

w(x) =
1

2πσ2
e−‖x‖

2/2σ2
, ‖x‖2 = x2

1 + x2
2. (18)

This results in a system of linear equations similar to the one
in (3). However, the weighted inner-product and the weighted
norm are now defined differently as

〈φi, φj〉w =
N∑

m=1

φi(xm − x0)φj(xm − x0)w(xm − x0)

= ΦT
i WΦj (19)

‖φi‖2w =
N∑

m=1

|φi(xm − x0)|2w(xm − x0)

= ΦT
i WΦi, (20)

where,

Φi = [φi(x1 − x0) . . . φi(xN − x0)]T (21a)

W = diag(w(x1 − x0), . . . , w(xN − x0)). (21b)

Thus, the counterpart of Eq. (3) for discrete MLS can be
compactly represented as

ΦT Wf = ΦT WΦa, (22)



IEEE TRANSACTIONS ON IMAGE PROCESSING 5

where,

Φ = [Φ0 . . . Φk], f =




f(x1)
...

f(xN )


 , a =




a0

...
ak


 ,

and the solution of the system is, therefore, given by

a = (ΦT WΦ)−1ΦT Wf , (23)

where the inverse ofΦT WΦ exists under mild constraints on
the numberN and distribution of the irregularly spaced points
about x0. The above technique is closely related to that of
local polynomial regressionfound in computational statistics
[17]. Local regression is used to model a relation between a
predictor variablex and a response variabley related to the
predictor variable. Suppose a dataset consists ofN -pairs of
observations,(x1, y1), . . . , (xN , yN ). A model of the form

ym = µ(xm) + εm (24)

is assumed whereµ(x) is an unknown function andεm is an
error term representing the random errors in the observations.
The errorsεm are assumed to be independent and identically
distributed,i.e. the covariance matrix of the errors isσ2

nI where
σ2

n is the variance of each of the error terms. Locally, around
a pointx0, it is assumed thatµ(x) can be well approximated
by µ̂(x) in terms of its Taylor series expansion up to a certain
orderk, i.e.

µ̂(x) = a0φ0(x− x0) + · · ·+ akφk(x− x0),

where φ0(x), φ1(x), φ2(x), . . . are the bivariate monomials
1, x1, x2, . . . respectively. By following a weighted least
squares technique similar to the one used for discrete MLS,
an expression similar to the one given in Eq. (23) can be
arrived at for the coefficients by replacingf in Eq. (23) by the
observation vectory , [y1 . . . yN ]T . The estimate atx = x0

is then evaluated to be

ŷ0 = µ̂(0) = [φ0(0) . . . φk(0)]a

= [1 0 . . . 0](ΦT WΦ)−1ΦT Wy. (25)

Two important measures of the quality of this estimator are
its bias and its variance, which are defined as follows

• Bias(ŷ0)=E{ŷ0} − y0.
• Variance=E{(y0 − E{ŷ0})2}.

These measures are controlled by the two parameters used in
the regression procedure:

1) the scale of the weighting function, also referred to as
bandwidthin the statistics literature (not to be confused
with the bandwidth of the filterG(ω) obtained in sub-
section II-A), and

2) the order of the truncated Taylor series expansion.

Both these parameters have a critical effect on the local
regression fit. If the scale is too small, insufficient data will
fall within the chosen support of the weight function and a
large variance, or a noisy fit will result. On the other hand,
if the scale is too large, the local polynomial may not fit the
data well within the window of the weight function, resulting
in a larger bias. This is especially true in regions where the

data changes rapidly or has large curvature. The order of
approximation has the opposite effect on bias and variance.
A higher order of approximation means that the estimate
fits the data well, resulting in a lower bias. However, since
the number of unknowns (coefficients) involved in this is
larger, the variance of the estimate is higher. Thus, these two
parameters must be chosen to compromise this bias-variance
tradeoff.

In image superresolution, variance is a measure of the noise
in the output and bias is a measure of the amount of blur
introduced by the MLS process. Thus, a technique is needed
that would permit selection of the scale and order locally so
that an effective compromise between blur introduced by the
process and noise in the output is reached. This is really a
model selection problem which has been explored extensively
in the statistics and signal processing literature. One possible
solution is described in the next subsection.

B. Selecting Scale And Order:Model Selection Criteria

In order to evaluate the effect of scale and order selection
on the estimated value, it is required to define a criterion that
assess the performance of the fit. Using mean square error
(MSE) as a criterion is not advisable, as the estimator that
fits the noisy data perfectly would then be the best estimator,
which is clearly not desired. The desired criterion should
indicate poor performance in case of both high bias and high
variance situations. Two commonly used criteria are mentioned
below [17]:

1) Prediction mean square error (PMSE) is defined as

PMSE = E{(ynew − µ̂(xnew))2}.
PMSE measures the quality of prediction. However,
since we have only one set of data, an estimate of
the PMSE is implemented by the cross validation (CV)
estimator [18] which is defined as

CV =
1
N

N∑
m=1

(ym − µ̂−m(xm))2,

where µ̂−m(xm) denotes the estimate ofµ(xm) ob-
tained by leaving outxm and computing it from the
remainingN −1 points. A lower value ofCV indicates
a better fit.

2) The scaled sum of squared error (SSE) is defined as

SSE =
1
σ2

n

N∑
m=1

(µ(xm)− µ̂(xm))2.

Note that this is different from MSE, which is
∑

m(ym−
µ̂(xm))2. It attempts to measure how accurately the esti-
mateµ̂(xm) approximatesµ(xm), instead of measuring
how well the estimated pointŝµ(xm) fit the dataym.
The Cp criterion provides an unbiased estimate of the
SSE and is given by [19]

Cp =
1
σ2

n

N∑
m=1

(ym − µ̂(xm))2 −N + 2p, (26)
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where p is the number of parameters in the model.
Since the model used here has coefficientsa0, . . . , ak,
therefore,p is equal tok+1. A low value ofCp indicates
a better fit. It should also be noted thatCp criterion is
a modified version of the AIC criterion developed by
Akaike several years back and used recently in [20].

For evaluation, theCp metric requires much fewer computa-
tions than theCV metric. Thus, in the simulations and results
that follow, theCp criterion will be used for selection of model
parameters. Before proceeding further, it should be noted that
the expression forCp given in Eq. (26) is actually valid for
“global” regression techniques. For local regression involving
the Gaussian weight function used here, the definition needs
to be modified to [21]

Cp =
1

tr(W)

N∑
m=1

wm

σ2
n

(ym− µ̂(xm))2−1+2
tr(M2)
tr(W)

, (27)

where,
M2 = (ΦT WΦ)−1ΦT W2Φ,

and W is the diagonal matrix in Eq. (21b) involving the
weights wm , w(xm − x0). Note that the expression for
the localizedCp requires an estimate of the noise variance
σ2

n. The variance of the intensity values in a region of the
image that does not contain any sharp edges or rapid repetitive
variations (textures) is estimated. For regions that are fairly
constant in the original image, this variance can almost entirely
be attributed to the noise.

C. Computational complexity

One of the advantages of using local regression methods
such as MLS is that they involve solving a large number of
small system of equations as against a single large system
usually required by global approaches. An analysis of the
computational complexity of MLS is provided in [13], [22].
It is shown in [22] that the complexity of the approximant at
a single pointx is bounded byO(Q3 + Q2|I(x)|+ Q|I(x)|),
whereQ is the dimensionality of the polynomial space and
|I(x)| is the number of points in the neighborhoodI(x) of
the point x used in the computation. Clearly,Q and |I(x)|
depend, respectively, on the order and scale parameters.

This bound is valid for a fixed scale and order. In the
adaptive approach, it is desired precisely to find a scale and
order that would result in the optimal tradeoff between blur
and noise. Thus, statistical techniques have been adopted to
adaptively choose the scale and order for each point. One
of the techniques which involves theCp metric has been
described here. Due to the complex interdependency between
scale and order, there is, so far, no known technique that can
search simultaneously for the optimal scale and order. The
usual practice is to fix one of the parameters and optimize
for the other and repeat this process for different values of
the first parameter. This is, obviously, a more computation
intensive process than the simple MLS process using fixed
scale and order, since it involves repeating the process for
different values of scales and orders. The number of com-
putations performed can be limited by restricting the range

of scale and order values over which the search is done. The
justification behind this is that real images can usually be well
approximated by piecewise polynomials of orders less than
five, and it makes no sense to choose the scale value so large
that points very far away from the point being estimated end
up being used in the computation. This is especially true in
the MLS approach, where the weight functionw(x), ideally,
vanishes for argumentsx = x1 and x = x2 with ‖x1 − x2‖
greater than a certain threshold [13, pp.35] .There exist several
other technical devices to speed up computations. These are
based on the idea that scale should be a smooth function of the
point x being approximated [13, pp.43] and the order needs
to be chosen from a set of low cardinality. Thus, instead of
evaluating the scale and order at all desired points, these can
be evaluated for a smaller set of points. The value of the scale
and order at other points can be obtained by interpolating
the values obtained for the smaller set. Details on methods
to implement such techniques efficiently can be found in [20]
[23].

IV. SIMULATION RESULTS

Simulation results demonstrating some of the important
properties of MLS and its application to superresolution are
presented here. Both synthetic and real images are considered.
The PSNR andMSV D metrics are used as indicators of
performance. TheMSV D metric, defined in [5], is based on
the singular values of the image and gives a much better
representation of the quality of an image with regard to
the human visual system for a large variety of distortions.
The MSV D metric has also been used in the context of
second-generation wavelet superresolution [4] [6] to choose
a threshold value for the wavelet coefficients that strikes an
optimal balance between noise filtering and blur introduced
by the thresholding. A lower value ofMSV D indicates better
image visual quality.

Figure 3 shows four LR frames of size 64× 64 of the
synthetic “cameraman” image corrupted by noise of variance
0.01. The desired resolution enhancement factor is 2; hence the
resulting HR images are 128× 128. The HR images obtained
by choosing a fixed scale and order for the entire image,
along with their corresponding PSNR andMSV D metrics are
shown for different values of scales and orders in Figures 4
and 5. The tradeoff between blur (bias) and noise (variance)
described in subsection II-C can be clearly seen from these
images. The HR image obtained by adaptively selecting the
scale and order is shown in Figure 6. Even though the image
obtained by the adaptive procedure does not have the highest
PSNR, or the lowestMSV D, certain distinctive features in the
image such as the leg of the tripod and the building in the
background are captured much better in the adaptive mode of
image reconstruction than in any of the fixed scale and order
modes.

Next, the results obtained by using MLS in superresolution
are compared to those obtained by the surface approximation
method based on Delaunay triangulation [7]. Figure 7(a) shows
one sample from the six 64× 64 size LR frames of the tank
image sequence, corrupted by noise of variance 0.005. Here
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Fig. 3. Four LR Frames of the cameraman image sequence.

Fig. 4. Reconstructed images with approximation orders 0,2,4 for a fixed value of scale; (a) Scale=0.4, Order=0, PSNR=22.78,MSV D=0.08; (b) Scale=0.4,
Order=2, PSNR=23.07,MSV D=0.05; (c) Scale=0.4, Order=4, PSNR=20.25,MSV D=0.16

Fig. 5. Reconstructed images with different chosen scales for a fixed order of approximation; (a) Scale=0.4, Order=4, PSNR=20.25,MSV D=0.16; (b)
Scale=0.6, Order=4, PSNR=22.93,MSV D=0.06; (c) Scale=0.8, Order=4, PSNR=23.53,MSV D=0.05

again, the resolution enhancement factor is 2. The resulting
HR image obtained from the Delaunay triangulation method
is shown in Figure 7(b) and that obtained from the MLS
technique is shown in 7(c). It is seen that owing to the adaptive
nature of MLS, it performs better in filtering noise while at
the same time preserving edges.

Finally, the result of applying the Moving Least Squares
method to a real data sequence (supplied by Air Force Re-
search Laboratory at Rome, NY) is shown next. Figure 8(a)
shows one of the six 90× 90 size LR frames obtained from
a video sequence. Note that since this is a real data sequence
captured by a video camera, it has some amount of input blur.
To perform registration, it is necessary to know the motion
parameters of the camera. Since these are not known a priori,
these are estimated by the projective model in [14]. The results
of applying the Delaunay triangulation method and the MLS
technique are shown, respectively, in Figures 8(b) and 8(c).
The resulting HR images obtained by both methods are seen
to be comparable in visual quality. Also, the HR images from
both methods are seen to contain a small amount of blur. This
is to be expected since no post deblurring has been performed

Fig. 6. Reconstructed image by adaptive selection of scale and order.
PSNR=22.50,MSV D=0.06

on the HR image.

V. CONCLUSIONS

In the continuous formulation of MLS applied to noise
filtering and approximation of irregularly spaced data in the
superresolution problem, an expression for filter bandwidth in
terms of the order of polynomial approximation and the scale
of the Gaussian weighting function is obtained. The discrete
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Fig. 7. Simulation results on tank sequence showing comparison between Delaunay Triangulation and MLS methods. (a) Sample LR frame of the tank
sequence; (b) HR image using Delaunay Triangulation. PSNR=25.02,MSV D=0.04; (c) HR image using MLS. PSNR=31.22,MSV D=0.007.

Fig. 8. Simulation results showing comparison between Delaunay Triangulation and MLS methods on a real-world data sequence. (a) Sample LR frame of
the building sequence; (b) HR image using Delaunay Triangulation; (c) HR image using MLS.

implementation of MLS is performed on a sequence of LR
images registered to form the grid of non-uniformly spaced
data points. The MLS technique is then used adaptively to
evaluate the values of the high-resolution image on a regularly
spaced high-resolution grid. The parameters for adaptation in
the local approximation are the scale and order. Noise in the
output image increases with increasing order of approximation
but reduces with increasing scale. One the other hand, the blur
introduced reduces with increasing order but increases with
increasing scale. For a given scale of the Gaussian weight
function, the PSNR first increases with order of the image
and then decreases again. This is because at low orders,
degradation due to blur is higher than that due to noise,
while at higher orders,the reverse happens. Between these
two extremes, a tradeoff between the degrading effects of
blur and noise produces a better image. This suggests that
there is an optimal value of approximation order for a given
scale. Similarly, there is an optimal value of scale for a given
approximation order. Statistical and signal processing criteria
for joint optimization of the two dependent parameters are
applied to get optimal local tradeoff between noise filtration
and reduction of blur introduced by the MLS process.

The availability of two parameters has the capability of
producing greater robustness in numerical implementation than
when only one parameter (threshold) is used to achieve optimal

tradeoff between noise filtering and blur removal [4]. Ideally,
it would be desirable to introduce estimate of blur type and
blur support parameters [7] [8, and references therein] into the
superresolution process with not only noise filtering but also
simultaneous deblurring.

One goal of future research is to study the approach
advanced when input blur is present. Special attention may be
required to obtain the irregularly sampled raster in Figure 1 in
the presence of near field and medium field blurs for general
camera motion. The second goal is to study the problem in
the setting of multivariate orthogonal polynomials that are
not product separable and by using weight functions that do
not necessarily have circular support. For example, if then-
dimensional weight function is chosen to be the multivariate
Gaussian given by

w(x) , 1
(2π)n/2σ1 . . . σn

exp
{
−1

2

(
x2

1

σ2
1

+ · · ·+ x2
n

σ2
n

)}
,

then a set ofn-dimensional non-separable orthogonal Hermite
polynomials can be found, as was proved by Grad in [24]
for the case whenσ1 = σ2 = · · · = σn = 1. The filter
impulse response in then-dimensional case can be obtained
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by generalizing the expression in Eq. (30) as,

g(x) = w(x)
l∑

i=0

(
−1

4

)|i| 1
i!

H
|2i|
2i (x; σ) ,

where,

x = [x1 x2 . . . xn]T , i = [i1 i2 . . . in]T ,

|i| = i1 + i2 + · · ·+ in, i! = i1!i2! . . . in!,
l∑

i=0

=
l1∑

i1=0

l2∑

i2=0

· · ·
ln∑

in=0

and H
|2i|
2i (x;σ) is the multivariate non-separable Hermite

polynomial of total degree|2i| with the degree ofxj given
by ij for j = 1, 2, . . . , n. Adapting the shape of the weight
function, and hence the neighborhood selected for each point,
is shown to be a very effective technique in reducing blur
[25]. However, the technique described in [25] does not adapt
the order of approximation at each point. It is expected that
by including such shape adaptivity with the scale and order
adaptivity presented here, much better results can be obtained.
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APPENDIX I
DERIVATION OF THE FILTER BANDWIDTH

A derivation of the bandwidth of the filter whose impulse
response is given by Eq. (7) is presented here. For oddi,
Hi(x) is an odd function ofx and henceφi(0) = 0 . As a
result, only those terms in the summation in Eq. (7) need to
be retained for whichi is even. The summation in (7) can,
therefore, be rewritten as

g(x) =
l∑

i=0

φ2i(0)φ2i(x)
22i(2i)!

w(x), (28)

wherel = k/2, if k is even andl = (k − 1)/2 if k is odd. It
can be shown that,

H2n(0) = (−1)n (2n)!
n!

.

Using this, and the expressions forw(x) andφi(x), Eq. (28)
simplifies to

g(x) =
l∑

i=0

(−1)iφ2i(x)
4ii!

w(x) (29)

=
e−x2/2σ2

σ
√

2π

l∑

i=0

(
−1

4

)i 1
i!

H2i

(
x

σ
√

2

)
(30)

Interestingly, the preceding form forg(x) can be extracted
from a result in [26], which is derived by considering the effect
of the quantum free propagator on wave packets approximated
by a linear combination of Hermite polynomials.

Replacingx by x/σ
√

2 in Eq. (4) and using the result in
(29) yields after simplification,

g(x) =
l∑

i=0

(σ2)i (−1)i

2ii!
d2i

dx2i
(w(x)) .

The FTG(ω) of g(x) is

G(ω) =
l∑

i=0

(σ2)i(−1)i(jω)2i

2ii!
W (ω) = W (ω)

l∑

i=0

(σ2ω2)i

2ii!
.

Therefore,
∫ ∞

−∞
|G(ω)|2dω =

l∑

i=0

l∑

j=0

∫ ∞

−∞

(σ2ω2)i+j

2i+ji!j!
|W (ω)|2dω.

(31)
The FT W (ω) of w(x) is easily shown to beW (ω) =
e−ω2σ2/2. Substituting this in Eq. (31),
∫ ∞

−∞
|G(ω)|2dω =

l∑

i=0

l∑

j=0

∫ ∞

−∞

(σ2ω2)i+j

2i+ji!j!
e−ω2σ2

dω

=
√

π

σ2

l∑

i=0

l∑

j=0

σ2(i+j)[2(i + j)]!
2i+ji!j!4i+jσ2(i+j)(i + j)!

=
√

π

σ

l∑

i=0

l∑

j=0

[2(i + j)]!
8i+ji!j!(i + j)!

, (32)

since
∫ ∞

−∞
ω2ne−ω2σ2

=
1.3 . . . (2n− 1)

2nσ2n

√
π

σ2
=

(2n)!
σ2n4nn!

√
π

σ2
.

(33)
Similarly,
∫ ∞

−∞
ω2|G(ω)|2dω =

√
π

2σ3

l∑

i=0

l∑

j=0

(2i + 2j + 1)[2(i + j)]!
8i+ji!j!(i + j)!

.

(34)

Substituting Eq. (32) and Eq. (34) in the expression for
bandwidth,

∆2
ω =

∫∞
−∞ ω2|G(ω)|2dω∫∞
−∞ |G(ω)|2dω

,

one gets,

∆2
ω =

√
π

2σ3

∑l
i=0

∑l
j=0

(2i+2j+1)[2(i+j)]!
8i+ji!j!(i+j)!√

π
σ

∑l
i=0

∑l
j=0

[2(i+j)]!
8i+ji!j!(i+j)!

=
1

2σ2


1 +

2
∑l

i=0

∑l
j=0

i[2(i+j)]!
8i+ji!j!(i+j)!∑l

i=0

∑l
j=0

[2(i+j)]!
8i+ji!j!(i+j)!

+
2
∑l

i=0

∑l
j=0

j[2(i+j)]!
8i+ji!j!(i+j)!∑l

i=0

∑l
j=0

[2(i+j)]!
8i+ji!j!(i+j)!




=
1

2σ2


1 +

4
∑l

i=0

∑l
j=0

i[2(i+j)]!
8i+ji!j!(i+j)!∑l

i=0

∑l
j=0

[2(i+j)]!
8i+ji!j!(i+j)!


 . (35)
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We believe that the formula for∆2
ω derived above is new and

provides an analytical basis for guidelines in the parameter
selection process.
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